Question 8.13: Quarreling pets Now let’s apply Equations 8.18 and 8.20 to a...

Quarreling pets

Now let’s apply Equations 8.18 and 8.20 to a simple one-dimensional system. Suppose a 2.0 kg cat and a 3.0 kg dog are moving toward each other along the x axis, heading for a fight. At a particular instant, the cat is 1.0 m to the right of the origin and is moving in the +x direction with speed 3.0 m/s, and the dog is 2.0 m to the right of the origin, moving in the -x direction with speed 1.0 m/s. Find the position and velocity of the center of mass of the two-pet system, and also find the total momentum of the system.

\begin{matrix} x_{cm}=\frac{m_Ax_A  +  m_Bx_B  +  m_Cx_C  +   \cdot  \cdot  \cdot }{m_A  +  m_B  +  m_C  +  \cdot  \cdot  \cdot }, \\ \\ y_{cm}=\frac{m_Ay_A  +  m_By_B  +  m_Cy_C  +  \cdot  \cdot  \cdot }{m_A  +  m_B  +  m_C  +  \cdot  \cdot  \cdot}.\end{matrix}          (8.18)

 

\begin{matrix} \upsilon_{cm,x} =\frac{m_A\upsilon_{A,x}  +  m_B\upsilon_{B,x}  +  m_C\upsilon_{C,x}  +  \cdot  \cdot  \cdot }{m_A  +  m_B  +  m_C  +  \cdot  \cdot  \cdot }, \\ \\ \upsilon_{cm, y}=\frac{m_A\upsilon_{A,y} + m_B\upsilon_{B,y} + m_C\upsilon_{C,y} + \cdot  \cdot  \cdot }{m_A  +  m_B  +  m_C  + \cdot  \cdot  \cdot } .\end{matrix}        (8.20)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

SET UP Figure 8.25 shows our sketch. We represent the pets’ motion as x components of velocity, being careful with signs.

SOLVE To find the center of mass of the two-pet system, we use Equations 8.18:

x_{cm}=\frac{m_{cat}(x_{cat})+m_{dog}(x_{dog})}{m_{cat}+m_{dog}}

=\frac{(2.0  kg)(1.0  m)+(3.0  kg)(2.0  m)}{2.0  kg +3.0  kg}=1.6  m.

To find the velocity of the center of mass, we use Equations 8.20:

\upsilon _{cm,x}=\frac{m_{cat}\upsilon _{cat,x}  +  m_{dog}\upsilon _{dog,x}}{m_{cat}  +  m_{dog}}

=\frac{(2.0  kg)(3.0  m/s)  +  (3.0  kg)(-1.0  m/s)}{2.0  kg  +  3.0  kg}

= 0.60 m/s.

The total x component of momentum is the sum of the x components of momenta of the two animals:

P_{x} = m_{cat}(\upsilon _{cat,x})  +  m_{dog}(\upsilon _{dog,x})

=(2.0  kg)(3.0  m/s)  +  (3.0  kg)(-1.0  m/s)

= 3.0 kg · m/s.

Alternatively, the total momentum is the total mass M times the velocity of the center of mass:

P_x = M \upsilon _{cm,x} = (5.0  kg)(0.60  m/s) = 3.0  kg \cdot m/s

REFLECT As always, remember that an object moving in the -x direction has a negative x component of velocity. The total momentum of the system is equal to the momentum of a single particle with mass equal to the total mass of the system and with velocity equal to the velocity of the center of mass of the system.

Practice Problem: At the instant described, the cat decides to avoid combat. It quickly turns around and runs in the -x direction with speed 2.0 m/s. Find the position and velocity of the center of mass, and the total momentum of the system, at this instant. Answers: x_{cm} = 1.6  m,  \upsilon_{cm }= -1.4  m/s,  P_x = -7.0  kg \cdot m/s.

8.25

Related Answered Questions