Question P.6.13: Rationalizing a Numerator Rationalize the numerator: √x+h - ...

Rationalizing a Numerator

Rationalize the numerator:

\frac{\sqrt{x+h} – \sqrt{x}}{h}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The conjugate of the numerator is \sqrt{x+h} +\sqrt{x}. If we multiply the numerator and denominator by \sqrt{x+h} +\sqrt{x}, the simplified numerator will not contain a radical. Therefore, we multiply by 1, choosing \frac{\sqrt{x+h} +\sqrt{x}}{\sqrt{x+h} +\sqrt{x}} for 1.

\frac{\sqrt{x+h} – \sqrt{x}}{h}=\frac{\sqrt{x+h} – \sqrt{x}}{h}·\frac{\sqrt{x+h} +\sqrt{x}}{\sqrt{x+h} +\sqrt{x}}                    Multiply by 1.

=\frac{(\sqrt{x+h})²-(\sqrt{x})²}{h(\sqrt{x+h}+\sqrt{x})}                   (\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b}) = (\sqrt{a})^2 – (\sqrt{b})^2

=\frac{x + h – x}{h(\sqrt{x+h}+\sqrt{x})}                          (\sqrt{x+h})²=x+h and (\sqrt{x})²=x.

=\frac{h}{h(\sqrt{x+h}+\sqrt{x})}                              Simplify: x + h – x = h.

=\frac{1}{\sqrt{x+h}+\sqrt{x}},  h ≠ 0                  Divide both the numerator and denominator                                                           by h.

Related Answered Questions

Question: P.6.2

Verified Answer:

a. \frac{x^3+x^2}{x+1}=\frac{x^2(x+1)}{x+1}...
Question: P.6.12

Verified Answer:

\frac{\sqrt{9 - x²}+ \frac{x²}{\sqrt{9 - x²...
Question: P.6.11

Verified Answer:

We will use the method of multiplying each of the ...
Question: P.6.9

Verified Answer:

Step 1  Find the least common denominator. Start b...
Question: P.6.8

Verified Answer:

Step 1   Find the least common denominator. In Exa...
Question: P.6.5

Verified Answer:

            Subtract numerators and include parent...
Question: P.6.10

Verified Answer:

Step 1   Add to get a single rational expression i...
Question: P.6.6

Verified Answer:

Step 1 Factor each denominator completely. 2x - 3 ...
Question: P.6.4

Verified Answer:

    This is the given division problem. \be...
Question: P.6.3

Verified Answer:

\begin{array}{ll}\frac{x-7}{x-1} \cdot \fra...