Question 15.7: Reaction Mechanisms II The gas-phase reaction of chlorine wi...

Reaction Mechanisms II
The gas-phase reaction of chlorine with chloroform is described by the equation

Cl_{2} (g) + CHCl_{3} (g) → HCl (g) + CCl_{4} (g) 

The rate law determined from experiment has a noninteger order:

Rate = k [Cl_{2}]^{1 / 2}[CHCl_{3}]

A proposed mechanism for this reaction follows:

Cl_{2}   (g)\xrightleftharpoons[k _{- 1}]{k _{1}} 2  Cl  (g)                                  Both fast with equal rates (fast equilibrium) 

Cl  (g)  +  CHCl_{3} (g)  \xrightarrow[]{k_{2}}  HCL  (g) +  CCl_{3} (g)                                        Slow

CCl_{3} (g)  + Cl  (g)  \xrightarrow[]{k_{3}}  CCl_{4} (g)                                                             Fast

Is this an acceptable mechanism for the reaction?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Two questions must be answered. First, does the mechanism give the correct overall stoichiometry? Adding the three steps does yield the correct balanced equation:

  Cl_{2}  (g)\xrightleftharpoons[]{} 2  Cl  (g)

Cl (g)  +  CHCl_{3} (g)  →  HCL (g) +  CCl_{3} (g)

\underline{CCl_{3} (g)  + Cl  (g)  →  CCl_{4} (g)}    

Cl_{2} (g)   +  \cancel{Cl  }(g) +  CHCl_{3} (g)   + \cancel{ CCl_{3}} (g)  +   \cancel{Cl  }(g)   →   \cancel{2  Cl }(g)  + HCL  (g) +  \cancel{CCl_{3}} (g)   +  CCl_{4} (g)

Overall reaction:                          Cl_{2}   (g)  +  CHCl_{3} (g)    →  HCL  (g)  +  CCl_{4} (g)

Second, does the mechanism agree with the observed rate law? Since the overall reaction rate is determined by the rate of the slowest step,

Overall rate = rate of second step  =   k_{2} [Cl] [CHCl_{3}]

Since the chlorine atom is an intermediate, we must find a way to eliminate [Cl] in the rate law. This can be done by recognizing that since the first step is at equilibrium, its forward and reverse rates are equal:

k_{1} [Cl_{2}]  =  k_{- 1} [Cl]²

Solving for  [Cl]² gives

[Cl]²  =  \frac{k_{1} [Cl_{2}] }{ k_{- 1}}

Taking the square root of both sides yields

[Cl] =   (\frac{k_{1}}{k_{- 1}})^{1 / 2} [Cl_{2}] ^{1 / 2}

and

Rate = k_{2}[Cl] [CHCl_{3}] =  k_{2} (\frac{k_{1}}{k_{- 1}})^{1 / 2} [Cl_{2}] ^{1 / 2} [CHCl_{3}]  =  k  [Cl_{2}] ^{1 / 2} [CHCl_{3}]

where                     k =     k_{2} (\frac{k_{1}}{k_{- 1}}  )^{1 / 2}

The rate law derived from the mechanism agrees with the experimentally observed rate law. This mechanism satisfies the two requirements and thus is an acceptable mechanism.

Related Answered Questions