Question 15.13: Regulation and Efficiency Calculations Find the percentage r...
Regulation and Efficiency Calculations
Find the percentage regulation and power efficiency for the transformer of Table 15.1 for a rated load having a lagging power factor of 0.8.
Table 15.1. Circuit Values of a 60-Hz 20-kVA 2400/240-V Transformer Compared with Those of an Ideal Transformer
Element Name |
Symbol |
Ideal |
Real |
Primary resistance |
R_1 |
0 |
3.0 ~\Omega |
Secondary resistance |
R_2 |
0 |
0.03 ~\Omega |
Primary leakage reactance |
X_1 =\omega L_1 |
0 |
6.5~\Omega |
Secondary leakage reactance |
X_2=\omega L_2 |
0 |
0.07~\Omega |
Magnetizing reactance |
X_m=\omega L_m |
\infty |
15~\Omega |
Core-loss resistance |
R_c |
\infty |
100~\Omega |
Learn more on how we answer questions.
First, we draw the circuit as shown in Figure 15.30. Notice that we have placed the magnetizing reactance Xm and core loss resistance Rc on the left-hand side of R1 and X1, because this makes the calculations a bit simpler and is sufficiently accurate. We assume a zero phase reference for the load voltage. It is customary in power-system engineering to take the values of phasors as the rms values (rather than the peak values) of the currents and voltages. Thus, as a phasor, we have
\mathrm{V_{load}}=240\angle 0^\circ \mathrm{~V~rms}
For rated load (20 kVA), the load current is
I_2=\frac{20\mathrm{~kVA}}{240\mathrm{~V}}=83.33\mathrm{~A~rms}
The load power factor is
\mathrm{power~factor}=\cos{(\theta)}=0.8
Solving, we find that
\theta =36.87^\circ
Thus, the phasor load current is
\mathrm{I}_2 =83.33 \angle -36.87^\circ\mathrm{~A~rms}
where the phase angle is negative because the load was stated to have a lagging power factor.
The primary current is related to the secondary current by the turns ratio:
\mathrm{I}_1=\frac{N_2}{N_1}\mathrm{I}_2=\frac{1}{10}\times 83.33 \angle -36.87^\circ =8.333\angle -36.87^\circ \mathrm{~A~rms}
Next, we can compute the voltages:
\mathrm{V}_2=\mathrm{V_{load}}+(R_2+jX_2) \mathrm{I}_2
\\=240+(0.03+j0.07)83.33\angle -36.87^\circ \\=240+6.345\angle 29.93^\circ=245.50+j3.166\mathrm{~V~rms}
The primary voltage is related to the secondary voltage by the turns ratio:
\mathrm{V}_1=\frac{N_1}{N_2}\mathrm{V}_2=10\times (245.50+j3.166)\\=2455.0+j31.66\mathrm{~V~rms}
Now, we can compute the source voltage:
\mathrm{V}_s=\mathrm{V}_1+(R_1+jX_1) \mathrm{I}_1
\\=2455.0+j31.66+(3+j6.5)\times (8.333\angle -36.87^\circ)\\=2508.2\angle 1.37^\circ \mathrm{~V~rms}
Next, we compute the power loss in the transformer:
P_{\mathrm{loss}}=\frac{V^2_s}{R_c}+I^2_1R_1+I_2^2R_2\\=62.91+208.3+208.3\\=479.5\mathrm{~W}
The power delivered to the load is given by
P_{\mathrm{load}}=V_{\mathrm{load}}I_2\times \mathrm{power~factor}\\=20\mathrm{~kVA}\times 0.8=16,000\mathrm{~W}
The input power is given by
P_{\mathrm{in}}=P_{\mathrm{load}}+P_{\mathrm{loss}}\\=16,000+479.5=16,479.5\mathrm{~W}
At this point, we can compute the power efficiency:
\mathrm{efficiency}=\left( 1-\frac{P_{\mathrm{loss}}}{P_{\mathrm{in}}} \right)\times 100\% \\= \left( 1-\frac{ 479.5}{16,479.5 } \right) \times 100\% =97.09\%
Next, we can determine the no-load voltages. Under no-load conditions, we have
I_1=I_2=0
\\V_1=V_s=2508.2
\\V_{\mathrm{no-load}}=V_2=V_1\frac{N_2}{N_1}=250.82\mathrm{~V~rms}
Finally, the percentage regulation is
percent regulation =\frac{ V_{\mathrm{no-load}}- V_{\mathrm{load}}}{ V_{\mathrm{load}}}\times 100\%\\=\frac{250.82-240}{240}\times 100\%\\=4.51\%
