Question 14.14: RELATING Ka, Kb, pKa, AND pKb (a) Kb for trimethylamine is 6...

RELATING K_{a},  K_{b},  pK_{a},  AND  pK_{b}

(a) K_{b} for trimethylamine is 6.5 × 10^{-5}. Calculate K_{a} for the rimethylammonium ion, (CH_{3})_{3}NH^{+}.

(b) K_{a} for HCN is 4.9 × 10^{-10}. Calculate K_{b} for CN^{-}.

(c) Pyridine (C_{5}H_{5}N), an organic solvent, has pK_{b} = 8.74. What is the value of pK_{a} for the pyridinium ion, C_{5}H_{5}NH^{+}?

STRATEGY
To calculate K_{a} from K_{b} (or vice versa), use the equation K_{a}  =  K_{w}/K_{b} or  K_{b}  =  K_{w}/K_{a} .
To calculate pK_{a} from pK_{b} , use the equation pK_{a}  =  14.00  –  pK_{b}.

pyr
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a)  K_{a}  for  (CH_{3})_{3}NH^{+} is the equilibrium constant for the acid-dissociation reaction

(CH_{3})_{3}NH^{+}(aq)  +  H_{2}O(l)  \rightleftharpoons  H_{3}O^{+}(aq)  +  (CH_{3})_{3}N(aq)

Because K_{a}  =  K_{w}/K_{b}, we can find K_{a}  for  (CH_{3})_{3}NH^{+}  from  K_{b} for its conjugate base (CH_{3})_{3}N:

K_{a}  =  \frac{K_{w}}{K_{b}}  =  \frac{1.0  ×  10^{-14}}{6.5  ×  10^{-5}}  =  1.5  ×  10^{-10}

(b) K_{a}  for  CN^{-} is the equilibrium constant for the base-protonation reaction

CN^{-}(aq)  +  H_{2}O(l)  \rightleftharpoons  HCN(aq)  +  OH^{-}(aq)

Because K_{b}  =  K_{w}/K_{a}, we can find K_{a}  for  CN^{-}  from  K_{a} for its conjugate acid HCN:

K_{b}  =  \frac{K_{w}}{K_{a}}  =  \frac{1.0  ×  10^{-14}}{4.9  ×  10^{-10}}  =  2.0  ×  10^{-5}

(c) We can find pK_{a}  for  C_{5}H_{5}NH^{+} from for C_{5}H_{5}N:

pK_{a}  =  14.00  –  pK_{b} = 14.00 – 8.74 = 5.26

Related Answered Questions

Question: 14.16

Verified Answer:

Step 1. The species present initially are N...
Question: 14.15

Verified Answer:

Steps 1–4. The species present initially are [late...