Question 11.3: Repeat Example 11.2 for the restricted three-stage launch ve...

Repeat Example 11.2 for the restricted three-stage launch vehicle.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Equation 11.56 gives the burnout velocity for three stages,
v_{bo_{3-stage}}=3I_{sp}g_{0}\ln n_{3-stage}= I_{sp}g_{0}\ln \left(\frac{1}{\pi _{PL}^{\frac{1}{3}}(1-\varepsilon)+\varepsilon } \right)^{3}                                   (11.56)

v_{bo}= 350 · 0.00981 · \ln\left(\frac{1}{0.05^{\frac{1}{3} }(1-0.15)+0.15}\right)^{3}= \underline{7.928  km/s}
Substituting m_{PL} = 10 000  kg,π_{PL} = 0.05 and  \varepsilon= 0.15 into Equations 11.57 and 11.58
yields

\begin{matrix} m_{E_{1}}=\frac{\left(1-\pi _{PL}^{\frac{1}{3}}\right)\varepsilon }{\pi _{PL}}m_{PL} & m_{E_{2}}=\frac{\left(1-\pi _{PL}^{\frac{1}{3}}\right)\varepsilon }{\pi _{PL}^{\frac{1}{3}}}m_{PL} & m_{E_{3}}=\frac{\left(1-\pi _{PL}^{\frac{1}{3}}\right)\varepsilon }{\pi _{PL}^{\frac{1}{3}}}m_{PL}\end{matrix}                  (11.57)

 

m_{p_{1}}=\frac{(1-\pi ^{\frac{1}{3} }_{PL})(1-\varepsilon )}{\pi_{PL}}{m_{PL}}

 

m_{p_{1}}=\frac{(1-\pi ^{\frac{1}{3} }_{PL})(1-\varepsilon )}{\pi ^{\frac{2}{3} }_{PL}}{m_{PL}}                                                       (11.58)

 

m_{p_{3}}=\frac{(1-\pi ^{\frac{1}{3} }_{PL})(1-\varepsilon )}{\pi ^{\frac{1}{3} }_{PL}}{m_{PL}}

 

\begin{matrix} \underline{m_{E_{1}}= 18 948  kg} & \underline{m_{E_{2}}=6980  kg} &\underline{ m_{E_{3}}=2572  kg} \end{matrix}
\begin{matrix} \underline{m_{P_{1}}= 107 370  kg} & \underline{m_{P_{2}}=39 556  kg} &\underline{ m_{P_{3}}=14 573  kg} \end{matrix}

Again, the total empty mass and total propellant mass are the same as for the single and two-stage vehicles. Notice that the velocity increase over the two-stage rocket is just 7 percent, which is much less than the advantage the two stage had over the single stage vehicle.

Related Answered Questions