Question 6.5.2: Response of an Armature-Controlled dc Motor The parameter va...

Response of an Armature-Controlled dc Motor

The parameter values for a certain motor are

K_{T} = K_{b} = 0.05  N · m/A

 

c = 10^{−4}  N · m ·s/rad      R_{a} = 0.5  Ω

 

L_{a} = 2 × 10^{−3}  H           I = 9 × 10^{−5}  kg · m²

where I includes the inertia of the armature and that of the load. The load torque T_{L} is zero.

Obtain the step response of i_{a}(t) and ω(t) if the applied voltage is v_{a} = 10  V

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substituting the given parameter values into (6.5.1) and (6.5.3), gives

\frac{I_{a}(s)}{V_{a}(s)} = \frac{I s  +  c}{L_{a}  I  s^{2}  +  (R_{a} I + c L_{a})s  +  cR_{a}  +  K_{b} K_{T}}         (6.5.1)

\frac{\Omega(s)}{V_{a}(s)} = \frac{K_{T}}{L_{a} I s^{2}  +  (R_{a} I  +  cL_{a})s  +  cR_{a}  +  K_{b} K_{T}}            (6.5.3)

\frac{I_{a}(s)}{V_{a}(s)} = \frac{9  ×  10^{−5} s  +  10^{−4}}{18  ×  10^{−8} s^{2}  +  4.52  ×  10^{−5} s  +  2.55  ×  10^{−3}}

\frac{\Omega(s)}{V_{a}(s)} = \frac{ 0.05}{18  ×  10^{−8}s^{2}  +  4.52  ×  10^{−5} s  +  2.55  ×  10^{−3}}
If v_{a} is a step function of magnitude 10 V,
I_{a}(s) = \frac{5  ×  10^{3} s  +  5.555  ×  10^{4}}{s(s  +  165.52)(s  +  85.59)} = \frac{C_{1}}{s} + \frac{C_{2}}{s  +  165.52} + \frac{C_{3}}{s  +  85.59}

\Omega(s) = \frac{2.777  ×  10^{6}}{s(s  +  165.52)(s  +  85.59)} = \frac{D_{1}}{s} + \frac{D_{2}}{s  +  165.52} + \frac{D_{3}}{s  +  85.59}

Evaluating the partial-fraction coefficients by hand or with MATLAB, as described in Chapter 3, we obtain
i_{a}(t) = 0.39  −  61 e^{−165.52t} + 61.74 e^{−85.59t}
ω(t) = 196.1 + 210^{−165.52t}  −  406 e^{−85.59t}
The plots are shown in Figure 6.5.1. Note the large overshoot in i_{a}, which is caused by the numerator dynamics. The plot shows that the steady-state calculation of i_{a} = 0.39  A greatly underestimates the maximum required current, which is approximately 15 A.
In practice, of course, a pure step input is impossible, and thus the required current will not be as high as 15 A. The real input would take some time to reach 10 V. The response to such an input is more easily investigated by computer simulation, so we will return to this topic in Section 6.7.

6.5.1

Related Answered Questions

Question: 6.3.5

Verified Answer:

In theory, a differentiator can be created by inte...
Question: 6.4.2

Verified Answer:

The voltage v_{f} is applied to the...
Question: 6.3.4

Verified Answer:

The impedance of a capacitor is 1/Cs. Thus, the tr...
Question: 6.3.1

Verified Answer:

The energy in this circuit is stored in the two ca...