Question 6,7: Rotational Relaxation in a Simple Diatomic Gas (Using Pair S...

Rotational Relaxation in a Simple Diatomic Gas (Using Pair Selection)
In this example, we will simplify the preceding generalized equilibrium distribution function for the case of a simple diatomic gas where pair selection is employed and compare the result to that derived in Section 6.4.2. Also, in this example, we assume that p_{rot} is a constant.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

To start, using Eq. 6.64 for rotation,

f(\epsilon _{i};T{i})=\frac{1}{\Gamma (\varsigma _{i}/{2})kT_{i}}\left(\frac{\epsilon _{i}}{kT_{i}} \right)^{{\zeta _{i}}/{2}-1} e^{{-\epsilon_{i}}/{kT_{i}}} =A\epsilon^{{{\zeta _{i}}/{2}-1}}_{i} e^{{-\epsilon _{i}}/{kT_{i}}}        (6.64)

we have the following for a specific value of \epsilon_{coll}:

f(\varepsilon _{coll}-\varepsilon _{rot};T_{coll})f(\varepsilon _{rot};T_{coll})P_{rot}

 

=P_{rot}\frac{1}{\Gamma (\frac{\zeta _{tr}}{2})kT_{coll}} \left(\frac{\varepsilon _{coll}-\varepsilon _{rot}}{kT_{coll}} \right)^{\frac{\zeta _{tr}}{2}-1} e^{-\frac{\varepsilon _{coll}-\varepsilon _{rot}}{kT_{coll}} }\frac{1}{{\Gamma (\frac{\zeta _{tr}}{2})kT_{coll}}} \left(\frac{\varepsilon _{rot}}{kT_{coll}} \right)^{{\frac{\zeta _{tr}}{2}-1}} e^{-\frac{\varepsilon _{rot}}{kT_{coll}} }    (6.105)

 

=P_{rot}\frac{ e^{-\frac{\varepsilon _{rot}}{kT_{coll}} } }{\Gamma (\frac{\zeta _{tr}}{2} )\Gamma (\frac{\zeta _{rot}}{2} )(kT_{coll})^{\frac{\zeta ^{rot}}{2}} (kT_{coll})^{\frac{\zeta ^{rot}}{2}}} (\varepsilon _{coll}-\varepsilon _{rot})^{\frac{\zeta _{tr}}{2}-1 } {\varepsilon _{rot}}^{\frac{\zeta _{tr}}{2}-1 }

 

=A(\varepsilon_{coll},T_{coll},\zeta _{tr},\zeta _{rot})P_{rot} (\varepsilon_{coll}-\varepsilon _{rot})^{\frac{\zeta_{tr}}{2}-1}  (\varepsilon _{rot})^{\frac{\zeta _{tr}}{2}-1}

The maximum value of f (\varepsilon _{coll} −\varepsilon _{rot}; T_{coll})f (ε_{rot}; T_{coll})p_{rot}  \text {for  a  fixed}  \varepsilon _{coll} should appear at a specific \varepsilon _{rot},0 where

0=\frac{d}{d\varepsilon _{rot}} \left[f(\varepsilon_{coll}- \varepsilon_{rot};T_{coll})f(\varepsilon _{rot};T_{coll})P_{rot}\right]\mid _{\varepsilon _{rot}=\varepsilon _{rot,0}}    (6.106)

which is

\frac{\varepsilon _{rot},0}{\varepsilon _{coll}} =\frac{\zeta _{rot}-2}{\zeta _{rt}+\zeta _{rot}-4}          (6.107)

Using Eqs. 6.105 and 6.107, we can write I(ε_{rot}; ε_{coll}, T_{coll}) (appearing in Eq. 6.104), as

I(\varepsilon _{rot};\varepsilon _{coll},T _{coll})=I_{1}(\varepsilon _{rot};\varepsilon _{coll},T _{coll})\times I_{2}(\varepsilon _{rot};\varepsilon _{coll})

 

=I_{1}(\varepsilon _{rot};\varepsilon _{coll},T _{coll})=\frac{f(\varepsilon _{coll}-\varepsilon _{rot},T _{coll})f(\varepsilon _{rot},T _{coll})}{[f(\varepsilon _{coll}-\varepsilon _{rot},T _{coll})f(\varepsilon _{rot},T _{coll})]\mid _{max}}

 

=\left(\frac{\zeta_{tr}+\zeta_{rot}-4 }{\zeta_{rot}-2} \right)^{\frac{\zeta _{rot}}{2}-1}\left(\frac{\zeta_{tr}+\zeta_{rot}-4 }{\zeta_{tr}-2} \right)^{\frac{\zeta _{tr}}{2}-1 }\left(\frac{\varepsilon_{rot} }{\varepsilon_{coll}} \right)^{\frac{\zeta _{rot}}{2}-1 }\left(1-\frac{\varepsilon_{rot} }{\varepsilon_{coll}} \right)^{\frac{\zeta _{tr}}{2}-1 }         (6.108)

First, since p_{rot}|_{max }= p_{rot}, then I_{2}(ε_{rot}; ε_{coll}) = 1. Furthermore, we can clearly see from the above expression, that I_{1} does not explicitly depend on temperature, rather it depends only on ε_{rot}, ε_{coll}, ζ _{tr}  and  ζ_{rot}.
The distribution function in Eq. 6.108 is general to any selection procedure, as long as \epsilon_{rot} and ζ_{rot} are set appropriately. If pair selection is used, then \epsilon_{rot} corresponds to the combined rotational energy of the collision pair, and ζ_{rot} corresponds to the combined rotational degrees of freedom. With these values (i.e., ζ_{rot}  \text {is  replaced  with}   2ζ_{rot}), Eq. 6.108 becomes equivalent to Eq. 6.76

\frac{P}{P_{max}}=\left\{\frac{\zeta_ {rot}+{1}/{2}-\omega }{{3}/{2}-\omega } \left(\frac{\epsilon_{tr}}{\epsilon _{coll}} \right) \right\}^{{3}/{2}-\omega } =\left\{\frac{\zeta_ {rot}+{1}/{2}-\omega }{\zeta _{rot}-1 } \left(1-\frac{\epsilon_{tr}}{\epsilon _{coll}} \right) \right\}^{\zeta_{rot}-1 }   (6.76)

derived in Section 6.4.2. For the special case of a diatomic gas, where ζ_rot = 2, Eq. 6.108 can be further simplified to

I(\varepsilon _{rot};\varepsilon _{coll},T _{coll})=\left(1-\frac{\varepsilon _{rot}}{\varepsilon _{coll}} \right)^{\frac{\zeta _{tr}}{2}-1 }      (6.109)

Related Answered Questions

Question: 6.2

Verified Answer:

The pre-shock conditions (state 1) are that of a h...
Question: 6.6

Verified Answer:

The results using the particle selection prohibiti...