Question 5.5: Series and Parallel Combinations of Complex Impedances Consi...
Series and Parallel Combinations of Complex Impedances
Consider the circuit shown in Figure 5.14(a). Find the voltage vC(t) in steady state. Find the phasor current through each element, and construct a phasor diagram showing the currents and the source voltage.

Learn more on how we answer questions.
The phasor for the voltage source is \mathrm{V}_s=10\angle -90^\circ. [Notice that vs(t) is a sine function rather than a cosine function, and it is necessary to subtract 90° from the phase.] The angular frequency of the source is ω = 1000. The impedances of the inductance and capacitance are
Z_L=j\omega L=j1000\times 0.1=j100~\Omega
and
Z_C =-j\frac{1}{\omega C } =-j\frac{1}{1000\times 10 \times10^{-6}}=-j100~\Omega
The transformed network is shown in Figure 5.14(b).
To find VC, we will first combine the resistance and the impedance of the capacitor in parallel. Then, we will use the voltage-division principle to compute the voltage across the RC combination. The impedance of the parallel RC circuit is
Z_{RC}=\frac{1}{1/R+1/Z_C}=\frac{1}{1/100+1/(-j100)} =\frac{1}{0.01+j0.01}=\frac{1\angle0^\circ }{0.01414\angle 45^\circ }=70.71\angle -45^\circ
Converting to rectangular form, we have
Z_{RC}=50-j50
The equivalent network is shown in Figure 5.14(c).
Now, we use the voltage-division principle to obtain
\mathrm{V}_C=\mathrm{V}_s\frac{Z_{RC}}{Z_L+Z_{RC}}=10\angle -90^\circ \frac{70.71\angle -45^\circ }{j100+50-j50}=10\angle -90^\circ \frac{70.71\angle -45^\circ}{50+j50}=10\angle -90^\circ\frac{70.71\angle -45^\circ}{70.71\angle 45^\circ} =10\angle -180^\circ
Converting the phasor to a time function, we have
v_C(t)=10\cos{(1000t-180^\circ)}=-10\cos {(1000t)}
Next, we compute the current in each element yielding
\mathrm{I}=\frac{\mathrm{V}_s}{Z_L+Z_{RC}}=\frac{10\angle -90^\circ}{j100+50-j50}=\frac{10\angle -90^\circ}{50+j50}=\frac{10\angle -90^\circ}{70.71\angle 45^\circ} =0.1414\angle-135^\circ
\mathrm{I}_R=\frac{\mathrm{V}_C}{R}=\frac{10\angle -180^\circ}{100}=0.1\angle -180 ^\circ
\mathrm{I}_C=\frac{\mathrm{V}_C}{Z_C}=\frac{10\angle -180^\circ}{-j100}= \frac{10\angle -180^\circ}{100\angle -90^\circ}=0.1\angle -90 ^\circ
The phasor diagram is shown in Figure 5.15.
