Question 10.36: Show that Γ(z + 1) ∼ √2πz z^z e^z {1 + 1/12z + 1/288z² - 139...

Show that \Gamma(z+1) \sim \sqrt{2 \pi z} z^{z} e^{-z}\left\{1+\frac{1}{12 z}+\frac{1}{288 z^{2}}-\frac{139}{51,840 z^{3}}+\cdots\right\}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We have \Gamma(z+1)=\int_{0}^{\infty} \tau^{z} e^{-\tau} d \tau. By letting \tau=z t, this becomes

\Gamma(z+1)=z^{z+1} \int\limits_{0}^{\infty} t^{z} e^{-z t} d t=z^{z+1} \int\limits_{0}^{\infty} e^{z(\ln t-t)} d t    (1)

which has the form (10.37), page 330,

I(z)=\int_{C}e^{z F(t)}\,d t               (10.37)

where F(t)=\ln t-t.

F^{\prime}(t)=0 when t=1. Letting t=1+w, we find, using Problem 6.23, page 185, or otherwise, the Taylor series

\begin{aligned} F(t)=\ln t-t & =\ln (1+w)-(1+w)=\left(w-\frac{w^{2}}{2}+\frac{w^{3}}{3}-\frac{w^{4}}{4}+\cdots\right)-1-w \\ & =-1-\frac{w^{2}}{2}+\frac{w^{3}}{3}-\frac{w^{4}}{4}+\cdots=-1-\frac{(t-1)^{2}}{2}+\frac{(t-1)^{3}}{3}-\frac{(t-1)^{4}}{4}+\cdots \end{aligned}

Hence from (1),

\begin{aligned} \Gamma(z+1) & =z^{z+1} e^{-z} \int\limits_{0}^{\infty} e^{-z(t-1)^{2} / 2} e^{z(t-1)^{3} / 3-z(t-1)^{4} / 4+\cdots} d t \\ & =z^{z+1} e^{-z} \int\limits_{-1}^{\infty} e^{-z w^{2} / 2} e^{z w^{2} / 3-z w^{4} / 4+\cdots} d w & (2) \end{aligned}

Letting w=\sqrt{2 / z} v, this becomes

\Gamma(z+1)=\sqrt{2} z^{z+1 / 2} e^{-z} \int\limits_{-\sqrt{z / 2}}^{\infty} e^{-v^{2}} e^{(2 / 3) \sqrt{2} z^{-1 / 2} v^{3}-z^{-1} v^{4}+\cdots} d v     (3)

For large values of z, the lower limit can be replaced by -\infty, and on expanding the exponential, we have

\Gamma(z+1) \sim \sqrt{2} z^{z+1 / 2} e^{-z} \int\limits_{-\infty}^{\infty} e^{-v^{2}}\left\{1+\left(\frac{2}{3} \sqrt{2} z^{-1 / 2} v^{3}-z^{-1} v^{4}\right)+\cdots\right\} d v     (4)

or

\Gamma(z+1) \sim \sqrt{2 \pi z} z^{z} e^{-z}\left\{1+\frac{1}{12 z}+\frac{1}{288 z^{2}}-\frac{139}{51,840 z^{3}}+\cdots\right\}    (5)

Although we have proceeded above in a formal manner, the analysis can be justified rigorously.

Another Method. Given

F(t)=-1-\frac{(t-1)^{2}}{2}+\frac{(t-1)^{3}}{3}-\frac{(t-1)^{4}}{4}+\cdots=-1-u^{2}

Then

u^{2}=\frac{(t-1)^{2}}{2}-\frac{(t-1)^{3}}{3}+\cdots

and by reversion of series or by using the fact that F(t)=\ln t-t, we find

\frac{d t}{d u}=b_{0}+b_{1} u+b_{2} u^{2}+\cdots=\sqrt{2}+\frac{\sqrt{2}}{6} u^{2}+\frac{\sqrt{2}}{216} u^{4}+\cdots

Then, from (10.41), page 330,

I(z)\sim\sqrt{{\frac{\pi}{z}}}\,e^{z F(t_{0})}\biggl\{b_{0}+{\frac{1}{2}}{\frac{b_{2}}{z}}+{\frac{1\cdot3}{2\cdot2}}{\frac{b_{4}}{z^{2}}}+{\frac{1\cdot3\cdot5}{2\cdot2\cdot2}}{\frac{b_{6}}{z^{3}}}+\cdot\cdot\cdot\biggr\}               (10.41)

we find

\Gamma(z+1) \sim \sqrt{\frac{\pi}{z}} z^{z+1} e^{z(\ln 1-1)}\left\{\sqrt{2}+\frac{1}{2}\left(\frac{\sqrt{2}}{6}\right) \frac{1}{z}+\frac{1 \cdot 3}{2 \cdot 2}\left(\frac{\sqrt{2}}{216}\right) \frac{1}{z^{2}}+\cdots\right\}

or

\Gamma(z+1) \sim \sqrt{2 \pi z} z^{z} e^{-z}\left\{1+\frac{1}{12 z}+\frac{1}{288 z^{2}}+\cdots\right\}

Note that since F^{\prime \prime}(1)=-1, we find on using (10.42), page 330,

I(z)\sim\sqrt{\frac{-2\pi}{z F^{\prime\prime}(t_{0})}}\,e^{z F(t_{0})}          (10.42)

\Gamma(z+1) \sim \sqrt{2 \pi z} z^{z} e^{-z}

which is the first term. For many purposes this first term provides sufficient accuracy.

Related Answered Questions

Question: 10.10

Verified Answer:

From Problem 7.35, page 233, we have \beg...
Question: 10.47

Verified Answer:

By Problem 6.33, we have J_{n}(z)=\frac{1}{...
Question: 10.46

Verified Answer:

We have P=\Gamma\left(\frac{1}{m}\right) \G...
Question: 10.45

Verified Answer:

The Legendre polynomials P_{n}(z) a...
Question: 10.43

Verified Answer:

Using Problems 10.39, 10.42, 10.170, and the addit...
Question: 10.41

Verified Answer:

(a) We have K^{\prime}=\int_{0}^{1} \frac{d...
Question: 10.40

Verified Answer:

From Problem 10.39 (a) \operatorname{sn}(z+...
Question: 10.39

Verified Answer:

We have z=\int_{0}^{\phi} \frac{d \theta}{\...
Question: 10.33

Verified Answer:

Since F(a, b ; c ; z)=1+\frac{a \cdot b}{1 ...