Question 3.32: Show that (a) ∇ ≡ ∂/∂x + i ∂/∂y = 2 ∂/∂z , (b) ∇ ≡ ∂/∂x - i ...
Show that (a) \nabla \equiv \frac{\partial}{\partial x}+i \frac{\partial}{\partial y}=2 \frac{\partial}{\partial \vec{z}}, (b)\bar{\nabla} \equiv \frac{\partial}{\partial x}-i \frac{\partial}{\partial y}=2 \frac{\partial}{\partial z} .
Learn more on how we answer questions.
From the equivalences established in Problem 3.31, we have
(a) \nabla \equiv \frac{\partial}{\partial x}+i \frac{\partial}{\partial y}=\frac{\partial}{\partial z}+\frac{\partial}{\partial \bar{z}}+i^2\left(\frac{\partial}{\partial z}-\frac{\partial}{\partial \bar{z}}\right)=2 \frac{\partial}{\partial \bar{z}}
(b) \bar{\nabla} \equiv \frac{\partial}{\partial x}-i \frac{\partial}{\partial y}=\frac{\partial}{\partial z}+\frac{\partial}{\partial \bar{z}}-i^2\left(\frac{\partial}{\partial z}-\frac{\partial}{\partial \bar{z}}\right)=2 \frac{\partial}{\partial z}