Question 8.1: Show that Eq. (8.2.27) reduces to Eq. (8.2.20).

Show that Eq. (8.2.27) reduces to Eq. (8.2.20).

f[x_i, x_j, x_k] = \frac{f[x_i, x_j] − f[x_j, x_k]}{x_i − x_k}                                                     (8.2.27)

b_2= \left[\frac{f(x_2) − f(x_1)}{x_2 − x_1}−\frac{ f(x_1) − f(x_0)}{x_1 − x_0}\right] \frac{1}{x_2 − x_0}                                  (8.2.20)

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let x_i = x_2, x_j = x_1,  and  x_k = x_0. Then we have

f[x_2, x_1, x_0] = \frac{f[x_2, x_1] − f[x_1, x_0]}{x_2 − x_0}                                        (8.2.29)

The first divided differences are computed from Eq. (8.2.26),

f[x_2, x_1] = \frac{f(x_2) − f(x_1)}{x_2 − x_1}                     (8.2.30)

f[x_1, x_0] =\frac{ f(x_1) − f(x_0)}{x_1 − x_0}                 (8.2.31)

Substituting the latter into Eq. (8.2.29) gives

f[x_2, x_1, x_0] =  \left[\frac{f(x_2) − f(x_1)}{x_2 − x_1}− \frac{f(x_1) − f(x_0)}{x_1 − x_0}\right] \frac{ 1}{x_2 − x_0}                    (8.2.32)

which is indeed Eq. (8.2.20) for b_2.

Related Answered Questions

Question: 8.5

Verified Answer:

With x_2 = x_0 + 2h and x_1 ...
Question: 8.6

Verified Answer:

We can begin by applying Eq. (8.2.52) to get conve...
Question: 8.2

Verified Answer:

The recursion relationship gives us f[x_3, ...
Question: 8.4

Verified Answer:

With x_i = x_0 + h  and  x_j = x_0,...