Conditions
• After assembly, the radial interference pressure, p, will be the same on both cylinders, i.e. cylinder 1 will have an external pressure, p, and cylinder 2 will have an internal pressure, p, as indicated in Figure 3.99.
• The decrease in the outside radius of cylinder 1, i1, plus the increase in the inside radius of cylinder 2, i2, will be equal to the radial interference, i.e. i=i1+ i2.
• Axial stresses are assumed to be zero (or negligible).
For cylinder 1:
σr=A1 – r2B1
and
σθ=A1+r2B1
at r = 20 mm, σr=0,
∴ B1=400A1
at r = 40 mm (no significant difference with 40.03 mm), σr=– p
∴ – p=A1 – 402202A1=A1 – 1600400A1
∴ A1=–34p
and
B1=–31600p
Thus
(σr)1=–34p(1 – r2400)
and
(σθ)1=–34p(1+r2400)
εθ=ru=E1(σθ – ν(σr+σz))=E1(σθ – νσr)
At the outside of cylinder 1, r = 40 mm,
40− i1=200 0001(σθ – νσr)
i.e. 40− i1=200 0001(− 34p)(1+1600400 – ν(1–1600400))
i1=30 0008p(45 – 43ν)
∴ i1=30 0002p(5 – 3ν)
For cylinder 2
σr=A2 – r2B2
and
σθ=A2+r2B2
at r = 60 mm, σr=0
∴ B2=3600A2
at r = 40 mm, σr=– p
∴ – p=A2 – 402602A2=A2 – 16003600A2
i.e. A2=54p
and
B2=3600×54p
Thus,
(σr)2=54p(1–r23600)
and
(σθ)2=54p(1+r23600)εθ=ru=E1(σθ–ν(σr+σz))=E1(σθ−νσr)
At the inside of cylinder 2, r = 40 mm,
40+i2=200 0001(54p)(1+16003600–ν(1–16003600))
i.e. i2=50 0008p(413+45ν)
∴ i2=50 0002p(13+5ν)
But i1+i2=i=0.03 mm
∴ 30 0002p(5 – 3ν)+50 0002p(13+5ν)=0.03
30 00010p – 10 0002νp+50 00026p+10 0002νp=0.03
150 00050p+78p=0.03
i.e. p=1284500N/mm2
For cylinder 1,
(σr)1=– 46.9(1–r2400)
(σθ)1=– 46.9(1+r2400)
and for cylinder 2,
(σr)2=28.2(1–r23600)
(σθ)2=– 46.9(1+r23600)