Question 3.10: Shrink/interference fit A pair of mild steel cylinders (E = ...

Shrink/interference fit

A pair of mild steel cylinders (E = 200 GPa) of equal length have the following dimensions:

(1) 40 mm bore and 80.06 mm outside diameter

(2) 80 mm bore and 120 mm outside diameter

i.e. there is a diametral interference of 0.06 mm. The larger cylinder is heated, placed around, and allowed to shrink onto, the smaller cylinder. Calculate the stresses after assembly.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Conditions
• After assembly, the radial interference pressure, p, will be the same on both cylinders, i.e. cylinder 1 will have an external pressure, p, and cylinder 2 will have an internal pressure, p, as indicated in Figure 3.99.
• The decrease in the outside radius of cylinder 1, i1i_{1}, plus the increase in the inside radius of cylinder 2, i2i_{2}, will be equal to the radial interference, i.e. i=i1+ i2i = i_{1} +  i_{2}.
• Axial stresses are assumed to be zero (or negligible).

For cylinder 1:

                  σr=A1 – B1r2                                    \sigma _{r} = A_{1}  –  \frac{B_{1}}{r^{2}}

and

                  σθ=A1+B1r2                                    \sigma _{\theta } = A_{1} + \frac{B_{1}}{r^{2}}

at r = 20 mm, σr=0 \sigma _{r} =0,

                 B1=400A1                                 B_{1} = 400A_{1}

at r = 40 mm (no significant difference with 40.03 mm), σr=– p \sigma _{r} = –  p

     – p=A1 – 202402A1=A1 – 4001600A1          –  p = A_{1}  –  \frac{20^{2}}{40^{2}} A_{1} = A_{1}  –  \frac{400}{1600} A_{1}

 

                              A1=43p                                                            A_{1} = – \frac{4}{3} p

and

                      B1=16003p                                            B_{1} = – \frac{1600}{3}p

Thus

          (σr)1=4p3(1 – 400r2)                    (\sigma _{r})_{1} = – \frac{4p}{3} \left(1  –  \frac{400}{r^{2}} \right)

and

          (σθ)1=4p3(1+400r2)                    (\sigma _{\theta })_{1} = – \frac{4p}{3} \left(1 + \frac{400}{r^{2}} \right)

 

          εθ=ur=1E(σθ – ν(σr+σz))=1E(σθ – νσr)                    \varepsilon _{\theta } = \frac{u}{r} = \frac{1}{E}(\sigma _{\theta }  –  \nu (\sigma _{r } + \sigma _{z })) = \frac{1}{E}(\sigma _{\theta }  –  \nu \sigma _{r })

At the outside of cylinder 1, r = 40 mm,

               i140=1200  000(σθ – νσr)                            \frac{-  i_{1}}{40} = \frac{1}{200   000}(\sigma _{\theta }  –  \nu \sigma _{r})

i.e.            i140=1200  000( 4p3)(1+4001600 – ν(14001600))                      \frac{-  i_{1}}{40} = \frac{1}{200   000} \left(-  \frac{4p}{3} \right)\left(1 + \frac{400}{1600}  –  \nu \left(1 – \frac{400}{1600} \right) \right)

 

i1=8p30 000(54 – 3ν4)i_{1} = \frac{8p}{30  000} \left(\frac{5}{4}  –  \frac{3\nu }{4} \right)

 

       i1=2p30 000(5 – 3ν)              i_{1} = \frac{2p}{30  000} \left(5  –  3 \nu \right)

For cylinder 2

               σr=A2 – B2r2                              \sigma _{r} = A_{2}  –  \frac{B_{2}}{r^{2}}

and

             σθ=A2+B2r2                         \sigma _{\theta } = A_{2} + \frac{B_{2}}{r^{2}}

at r = 60 mm, σr=0 \sigma _{r} =0

              B2=3600A2                            B_{2} = 3600 A_{2}

at r = 40 mm, σr=– p \sigma _{r} = –  p

       – p=A2 – 602402A2=A2 – 36001600A2              –  p = A_{2}  –  \frac{60^{2}}{40^{2}}A_{2} = A_{2}  –  \frac{3600}{1600}A_{2}
i.e.                  A2=45p                                   A_{2} = \frac{4}{5} p

and

              B2=3600×45p                            B_{2} = 3600 \times \frac{4}{5}p

Thus,

             (σr)2=4p5(13600r2)                          (\sigma_{r})_{2} = \frac{4p}{5} \left(1 – \frac{3600 }{r^{2}} \right)

and

            (σθ)2=4p5(1+3600r2)εθ=ur=1E(σθν(σr+σz))=1E(σθνσr)                        (\sigma_{\theta })_{2} = \frac{4p}{5} \left(1 + \frac{3600 }{r^{2}} \right)\\[0.5 cm]\varepsilon _{\theta } = \frac{u}{r} = \frac{1}{E}(\sigma _{\theta } – \nu (\sigma _{r } + \sigma _{z })) = \frac{1}{E}(\sigma _{\theta }-\nu \sigma _{r })

At the inside of cylinder 2, r = 40 mm,

     +i240=1200 000(4p5)(1+36001600ν(136001600))          \frac{+ i_{2}}{40} = \frac{1}{200  000} \left( \frac{4p}{5} \right)\left(1 + \frac{3600}{1600} – \nu \left(1 – \frac{3600}{1600} \right) \right)

i.e.                  i2=8p50 000(134+5ν4)                                  i_{2} = \frac{8p}{50  000} \left(\frac{13}{4} + \frac{5\nu }{4} \right)

                  i2=2p50 000(13+5ν)                                    i_{2} = \frac{2p}{50  000} \left(13 + 5 \nu \right)

But i1+i2=i=0.03 mmi_{1} + i_{2} = i = 0.03  mm

            2p30 000(5 – 3ν)+2p50 000(13+5ν)=0.03                        \frac{2p}{30  000}(5  –  3\nu ) + \frac{2p}{50  000}(13 + 5\nu ) = 0.03

 

               10p30 000 – 2νp10 000+26p50 000+2νp10 000=0.03                             \frac{10p}{30  000}  –  \frac{2\nu p}{10  000}+ \frac{26p}{50  000} + \frac{2\nu p}{10  000} = 0.03

 

           50p+78p150 000=0.03                    \frac{50p + 78p}{150  000} = 0.03

i.e.      p=4500128N/mm2          p = \frac{4500}{128} N/mm^{2}

For cylinder 1,

      (σr)1=– 46.9(1400r2)           (\sigma _{r})_{1} = –  46.9\left( 1 – \frac{400}{r^{2}} \right)

 

      (σθ)1=– 46.9(1+400r2)           (\sigma _{\theta })_{1} = –  46.9\left( 1 + \frac{400}{r^{2}} \right)

and for cylinder 2,

       (σr)2=28.2(13600r2)             (\sigma _{r})_{2} = 28.2\left( 1 – \frac{3600}{r^{2}} \right)

 

        (σθ)2=– 46.9(1+3600r2)                (\sigma _{\theta })_{2} = –  46.9\left( 1 + \frac{3600}{r^{2}} \right)

 

3.99
3.100

Related Answered Questions

Question: 3.16

Verified Answer:

There is no restraint or applied loading (i.e. P =...