Question 13.3: Solve Example 13.2 again using Newmark method with Newton–Ra...
Solve Example 13.2 again using Newmark method with Newton–Raphson iterations within a time step.
Learn more on how we answer questions.
The calculations were carried out in an Excel sheet using the Newmark β method with iterations as discussed. Whenever there is a change in state from elastic to plastic, Newton–Raphson iterations were carried out within the time step until the unbalanced load was zero. The results are shown in Table 13.2.
At 0.3 sec, the elastic force reaches yield level. The tangent stiffness needs to be set equal to nil and iterations are required between 0.3 sec and 0.4 sec time step. The details are shown as follows.
Initialize
x_{i+1}^{(0)}=x_{i} = 0.0115, f_{s}^{(0)} = 230.2010
\Delta R^{(1)}=\Delta \overline{p}_i=2309.8684, \ \overline{k}_T=226320.0
Cycle 1
\Delta x^{(1)}=0.0102
x_{i+1}^{(1)}=x_{i+1}^{(0)}+\Delta x^{(1)} = 0.0217
\Delta f^{(1)}=f_{s}^{(1)}-f_{s}^{(0)}+(\overline{k} _{T}-k_{T})\Delta x^{(1)}
\Delta f^{(1)}=f_{s}^{(1)}-f_{s}^{(0)}+\left\lgroup\frac{1}{\beta (\Delta t)^{2}}m+\frac{\gamma }{\beta \Delta t} c \right\rgroup \Delta x^{(1)}=2125.5433
\Delta R^{(2)}=\Delta R^{(1)}-\Delta f^{(1)}=184.3251
Table 13.2 Newmark β Method With Newton–Raphson Iteration
t_{i} | x_{i} | \dot x_{i} | f_{si} | \ddot x_{i} | p_{i} | \Delta \overline{p} _{i} | k_{i} | \overline{k} _{i} | \Delta x _{i} | \Delta \dot x _{i} | \Delta x _{i+1} | \Delta \dot x _{i+1} | f_{si+1} | \ddot x _{i+1} | t_{i} |
s | m | m/s | N | m/s² | N | N | N/m | N/m | m | m/s | m | m/s | N | m/s² | s |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | (13) | (14) | (15) | (1) |
0 | 0.0000 | 0.0000 | 0.0000 | 0 | 0.0000 | 163.3300 | 20000.000 | 226320.000 | 0.0007 | 0.0144 | 0.0007 | 0.0144 | 14.4335 | 0.2887 | 0 |
0.1 | 0.0007 | 0.0144 | 14.4335 | 0.2887 | 163.33 | 749.8038 | 20000.000 | 226320.000 | 0.0033 | 0.0374 | 0.0040 | 0.0518 | 80.6940 | 0.4592 | 0.1 |
0.2 | 0.004 | 0.0518 | 80.694 | 0.4592 | 326.67 | 1691.821 | 20000.000 | 226320.000 | 0.0075 | 0.0459 | 0.0115 | 0.0977 | 230.2010 | 0.4579 | 0.2 |
0.3 | 0.0115 | 0.0977 | 230.2010 | 0.4579 | 490 | 2309.869 | 20000.000 | 226320.000 | 0.0102 | 0.0088 | 0.0217 | 0.1243 | 250.0000 | 0.0748 | 0.3 |
184.3251 | 0.0008 | 0.0163 | |||||||||||||
16.2889 | 0.0001 | 0.0014 | |||||||||||||
1.4395 | 0.0000 | 0.0001 | |||||||||||||
0.1272 | 0.000001 | 0.0000 | |||||||||||||
0.4 | 0.0226 | 0.1243 | 250.0000 | 0.0748 | 326.67 | 2476.218 | 0.000 | 226320.000 | 0.0120 | −0.0086 | 0.0346 | 0.1157 | 250.0000 | −0.2465 | 0.4 |
0.5 | 0.0346 | 0.1157 | 250.0000 | −0.2465 | 163.33 | 1977.845 | 0.000 | 226320.000 | 0.0096 | 0.0397 | 0.0442 | 0.0760 | 250.0000 | −0.5480 | 0.5 |
0.6 | 0.0442 | 0.0760 | 250.0000 | −0.5480 | 0 | 1020.004 | 0.000 | 226320.000 | 0.0049 | −0.0531 | 0.0491 | 0.0229 | 250.0000 | −0.5145 | 0.6 |
0.7 | 0.0491 | 0.0229 | 250.0000 | −0.5145 | 0 | −42.4858 | 0.000 | 226320.000 | −0.0002 | −0.0499 | 0.0489 | −0.0270 | 250.0000 | −0.4829 | 0.7 |
Cycle 2
\Delta x^{(2)}=0.0008
x_{i+1}^{(2)}=x_{i+1}^{(1)}+\Delta x^{(1)} = 0.0225
\Delta f^{(2)}=f_{s}^{2}-f_{s}^{(1)}+(\overline{k} _{T}-k_{T})\Delta x^{(2)}=168.0362
\Delta R^{(3)}=\Delta R^{(2)}-\Delta f^{(2)}=16.2889
Cycle 3
\Delta x^{(3)}=0.0001
x_{i+1}^{(3)}=x_{i+1}^{(2)}+\Delta x^{(3)} = 0.0226
\Delta f^{(3)}=f_{s}^{3}-f_{s}^{(2)}+(\overline{k} _{T}-k_{T})\Delta x^{(3)}=14.8494
\Delta R^{(4)}=\Delta R^{(3)}-\Delta f^{(3)}=1.4395
Cycle 4
\Delta x^{(4)}=0.00001
x_{i+1}^{(4)}=x_{i+1}^{(3)}+\Delta x^{(4)} = 0.0226
\Delta f^{(4)}=f_{s}^{4}-f_{s}^{(3)}+(\overline{k} _{T}-k_{T})\Delta x^{(4)}=1.3123
\Delta R^{(5)}=\Delta R^{(4)}-\Delta f^{(4)}=1.4395
Cycle 5
\Delta x^{(5)}=0.000001
x_{i+1}^{(5)}=x_{i+1}^{(4)}+\Delta x^{(5)} = 0.0226
\Delta f^{(5)}=f_{s}^{5}-f_{s}^{(4)}+(\overline{k} _{T}-k_{T})\Delta x^{(5)}=0.1160
\Delta R^{(6)}=\Delta R^{(5)}-\Delta f^{(5)}=1.4395
These results are substituted in the table below the same time step, and the procedure is continued till another change of state is encountered.
At 0.7 sec
At 0.7 sec, the velocity is positive but at 0.8 sec, the velocity is negative. It means there is a change in state between 0.7 and 0.8 sec. It indicates unloading. The tangent stiffness needs to be restored to 20000 N/m. Here, a different strategy will be required as discussed in Figure 13.18 and Example 13.1, Figure 13.22.
Setting total velocity = 0,
\Delta x=\Delta x_{1}+\Delta x_{2} numerical
=\Delta x_{1}+\Delta x_{2} true
\dot{x} _{i+1}=\frac{2}{\Delta t} (\psi \Delta x)-\dot{x} _{i} =0
or, \frac{2}{0.1} (ψ(-0.0002)-0.0229) = 0,
ψ = -5.725
\Delta x_{1} = ψΔx = 0.001145 m
also,
\overline{k} \Delta x_{2}=(1-\psi )\Delta \overline{p}
where , k_{T} because unloading is always elastic
∴ \Delta x_{2}=\frac{(1-\psi )\Delta \overline{p} }{\overline{k} } =\frac{(1+5.725)\times (-42.4858)}{226320} =-0.001262 m
Total displacement increment in the time step
Δx = 0.001145− 0.001262 = − 0.000117 m
Displacement at the end of the time step
x_{i+1} = x_{i}+ \Delta x = 0.0491 – 0.000117 = 0.04898 m
Velocity increment
\Delta \dot{x} _{i}=\frac{\gamma }{\beta \Delta t} \Delta x_{i}-\frac{\gamma }{\beta } \dot{x} _{i}+\Delta t\left\lgroup1-\frac{\gamma }{2\beta } \right\rgroup \ddot{x} _{i}
or, \Delta \dot{x} _{i}=\frac{0.50}{0.25\times 0.1} \Delta x-2\dot{x}
Velocity at the end of the time step
\dot{x} _{i+1}=\dot{x} _{i}+\Delta \dot{x} =20 \Delta x-\dot{x} _{i}=20\times (-0.000117)-0.0229=-0.02524
Similarly, acceleration at the end of the time step can be computed from the equation of motion.
Resisting force at the end of the time step
f_{i+1}=f_{i}+k_{T}\Delta x_{2} = 250+ 20000 × (-0.001262) = 247.66 N
Acceleration at the end of the time step
\ddot{x} _{i+1}=\frac{P_{i+1}-c\dot{x}_{i+1}-(f_{s})_{i+1} }{m}
\ddot{x} _{i+1}=\frac{0-316 \times (-0.02524)-247.66 }{500} = -0.4794 m/s²
Knowing the updated values at 0.8 sec, rest of the calculations can be carried out as usual.

