Question 13.3: Solve Example 13.2 again using Newmark method with Newton–Ra...

Solve Example 13.2 again using Newmark method with Newton–Raphson iterations within a time step.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The calculations were carried out in an Excel sheet using the Newmark β method with iterations as discussed. Whenever there is a change in state from elastic to plastic, Newton–Raphson iterations were carried out within the time step until the unbalanced load was zero. The results are shown in Table 13.2.
At 0.3 sec, the elastic force reaches yield level. The tangent stiffness needs to be set equal to nil and iterations are required between 0.3 sec and 0.4 sec time step. The details are shown as follows.
Initialize

x_{i+1}^{(0)}=x_{i} = 0.0115,      f_{s}^{(0)} = 230.2010

\Delta R^{(1)}=\Delta \overline{p}_i=2309.8684, \ \overline{k}_T=226320.0

Cycle 1

\Delta x^{(1)}=0.0102

x_{i+1}^{(1)}=x_{i+1}^{(0)}+\Delta x^{(1)} = 0.0217

\Delta f^{(1)}=f_{s}^{(1)}-f_{s}^{(0)}+(\overline{k} _{T}-k_{T})\Delta x^{(1)}

\Delta f^{(1)}=f_{s}^{(1)}-f_{s}^{(0)}+\left\lgroup\frac{1}{\beta (\Delta t)^{2}}m+\frac{\gamma }{\beta \Delta t} c \right\rgroup \Delta x^{(1)}=2125.5433

\Delta R^{(2)}=\Delta R^{(1)}-\Delta f^{(1)}=184.3251

Table 13.2 Newmark β Method With Newton–Raphson Iteration

t_{i} x_{i} \dot x_{i} f_{si} \ddot x_{i} p_{i} \Delta \overline{p} _{i} k_{i} \overline{k} _{i} \Delta x _{i} \Delta \dot x _{i} \Delta x _{i+1} \Delta \dot x _{i+1} f_{si+1} \ddot x _{i+1} t_{i}
s m m/s N m/s² N N N/m N/m m m/s m m/s N m/s² s
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (1)
0 0.0000 0.0000 0.0000 0 0.0000 163.3300 20000.000 226320.000 0.0007 0.0144 0.0007 0.0144 14.4335 0.2887 0
0.1 0.0007 0.0144 14.4335 0.2887 163.33 749.8038 20000.000 226320.000 0.0033 0.0374 0.0040 0.0518 80.6940 0.4592 0.1
0.2 0.004 0.0518 80.694 0.4592 326.67 1691.821 20000.000 226320.000 0.0075 0.0459 0.0115 0.0977 230.2010 0.4579 0.2
0.3 0.0115 0.0977 230.2010 0.4579 490 2309.869 20000.000 226320.000 0.0102 0.0088 0.0217 0.1243 250.0000 0.0748 0.3
184.3251 0.0008 0.0163
16.2889 0.0001 0.0014
1.4395 0.0000 0.0001
0.1272 0.000001 0.0000
0.4 0.0226 0.1243 250.0000 0.0748 326.67 2476.218 0.000 226320.000 0.0120 −0.0086 0.0346 0.1157 250.0000 −0.2465 0.4
0.5 0.0346 0.1157 250.0000 −0.2465 163.33 1977.845 0.000 226320.000 0.0096 0.0397 0.0442 0.0760 250.0000 −0.5480 0.5
0.6 0.0442 0.0760 250.0000 −0.5480 0 1020.004 0.000 226320.000 0.0049 −0.0531 0.0491 0.0229 250.0000 −0.5145 0.6
0.7 0.0491 0.0229 250.0000 −0.5145 0 −42.4858 0.000 226320.000 −0.0002 −0.0499 0.0489 −0.0270 250.0000 −0.4829 0.7

Cycle 2

\Delta x^{(2)}=0.0008

x_{i+1}^{(2)}=x_{i+1}^{(1)}+\Delta x^{(1)} = 0.0225

\Delta f^{(2)}=f_{s}^{2}-f_{s}^{(1)}+(\overline{k} _{T}-k_{T})\Delta x^{(2)}=168.0362

\Delta R^{(3)}=\Delta R^{(2)}-\Delta f^{(2)}=16.2889

Cycle 3

\Delta x^{(3)}=0.0001

x_{i+1}^{(3)}=x_{i+1}^{(2)}+\Delta x^{(3)} = 0.0226

\Delta f^{(3)}=f_{s}^{3}-f_{s}^{(2)}+(\overline{k} _{T}-k_{T})\Delta x^{(3)}=14.8494

\Delta R^{(4)}=\Delta R^{(3)}-\Delta f^{(3)}=1.4395

Cycle 4

\Delta x^{(4)}=0.00001

x_{i+1}^{(4)}=x_{i+1}^{(3)}+\Delta x^{(4)} = 0.0226

\Delta f^{(4)}=f_{s}^{4}-f_{s}^{(3)}+(\overline{k} _{T}-k_{T})\Delta x^{(4)}=1.3123

\Delta R^{(5)}=\Delta R^{(4)}-\Delta f^{(4)}=1.4395

Cycle 5

\Delta x^{(5)}=0.000001

x_{i+1}^{(5)}=x_{i+1}^{(4)}+\Delta x^{(5)} = 0.0226

\Delta f^{(5)}=f_{s}^{5}-f_{s}^{(4)}+(\overline{k} _{T}-k_{T})\Delta x^{(5)}=0.1160

\Delta R^{(6)}=\Delta R^{(5)}-\Delta f^{(5)}=1.4395

These results are substituted in the table below the same time step, and the procedure is continued till another change of state is encountered.
At 0.7 sec
At 0.7 sec, the velocity is positive but at 0.8 sec, the velocity is negative. It means there is a change in state between 0.7 and 0.8 sec. It indicates unloading. The tangent stiffness needs to be restored to 20000 N/m. Here, a different strategy will be required as discussed in Figure 13.18 and Example 13.1, Figure 13.22.
Setting total velocity = 0,

\Delta x=\Delta x_{1}+\Delta x_{2}    numerical

=\Delta x_{1}+\Delta x_{2}  true

\dot{x} _{i+1}=\frac{2}{\Delta t} (\psi \Delta x)-\dot{x} _{i} =0

or,    \frac{2}{0.1}   (ψ(-0.0002)-0.0229) = 0,

ψ = -5.725

\Delta x_{1} = ψΔx = 0.001145 m

also,

\overline{k} \Delta x_{2}=(1-\psi )\Delta \overline{p}

where , k_{T} because unloading is always elastic

∴          \Delta x_{2}=\frac{(1-\psi )\Delta \overline{p} }{\overline{k} } =\frac{(1+5.725)\times (-42.4858)}{226320} =-0.001262 m

Total displacement increment in the time step

Δx = 0.001145− 0.001262 = − 0.000117 m

Displacement at the end of the time step

  x_{i+1} =  x_{i}+ \Delta x = 0.0491 – 0.000117 = 0.04898 m

Velocity increment

 \Delta \dot{x} _{i}=\frac{\gamma }{\beta \Delta t} \Delta x_{i}-\frac{\gamma }{\beta } \dot{x} _{i}+\Delta t\left\lgroup1-\frac{\gamma }{2\beta } \right\rgroup \ddot{x} _{i}

or,                    \Delta \dot{x} _{i}=\frac{0.50}{0.25\times 0.1} \Delta x-2\dot{x}

Velocity at the end of the time step

\dot{x} _{i+1}=\dot{x} _{i}+\Delta \dot{x} =20 \Delta x-\dot{x} _{i}=20\times (-0.000117)-0.0229=-0.02524

Similarly, acceleration at the end of the time step can be computed from the equation of motion.
Resisting force at the end of the time step

f_{i+1}=f_{i}+k_{T}\Delta x_{2} = 250+ 20000 × (-0.001262) = 247.66 N

Acceleration at the end of the time step

\ddot{x} _{i+1}=\frac{P_{i+1}-c\dot{x}_{i+1}-(f_{s})_{i+1} }{m}

\ddot{x} _{i+1}=\frac{0-316 \times (-0.02524)-247.66 }{500} = -0.4794 m/s²

Knowing the updated values at 0.8 sec, rest of the calculations can be carried out as usual.

13.8
13.22

Related Answered Questions

Question: 13.4

Verified Answer:

Let mass = 1, stiffness = 39.5, Period = 1 sec, Da...