Question 7.4.11: Solve the initial value problem x′ = [6 -17 8 -6]x, x(0) = [...
Solve the initial value problem
\textbf{x}^{′} = \begin{bmatrix} 6 & -17 \\ 8 & -6 \end{bmatrix} \textbf{x}, \textbf{x}(0) = \left [ \begin{matrix} 4 \\ 2 \end{matrix} \right ] . (46)
Learn more on how we answer questions.
The coefficient matrix
A = \begin{bmatrix} 6 & -17 \\ 8 & -6 \end{bmatrix} (47)
has characteristic equation
|\textbf{A} – \lambda \textbf{I}| = \begin{bmatrix} 6-\lambda & -17 \\ 8 & -6-\lambda \end{bmatrix} =\lambda ^{2}+100=0,
and hence has the complex conjugate eigenvalues λ_{1}, λ_{2} = ±10i . If v = [a b]^{T} is an eigenvector associated with λ = 10i , then the eigenvector equation (A – λI)v = 0 yields
\left [ \begin{matrix}\textbf{A} -10i \cdot \textbf{I} \end{matrix} \right ] \textbf{v} = \begin{bmatrix} 6-10i & -17 \\ 8 & -6-10i \end{bmatrix} \left [ \begin{matrix} a \\ b \end{matrix} \right ] =\left [ \begin{matrix} 0 \\ 0 \end{matrix} \right ] .
Upon division of the second row by 2, this gives the two scalar equations
(6 – 10i )a – 17b = 0,
4a – (3 + 5i )b = 0, (48)
each of which is satisfied by a = 3 + 5i and b = 4. Thus the desired eigenvector is v = \left [ \begin{matrix} 3 + 5i & 4 \end{matrix} \right ]^{T} , with real and imaginary parts
a = \left [ \begin{matrix} 3 \\ 4 \end{matrix} \right ] and b = \left [ \begin{matrix} 5 \\ 0 \end{matrix} \right ], (49)
respectively. Taking q = 10 in Eq. (45) therefore gives the general solution of the system x^{′} = Ax.
x(t) = c_{1} (a cos qt – b sin qt ) + c_{2} (b cos qt + a sin qt ) (45)
x(t) = c_{1} \left ( \begin{matrix} \left [ \begin{matrix} 3 \\ 4 \end{matrix} \right ] \cos 10t – \left [ \begin{matrix} 5 \\ 0 \end{matrix} \right ] \sin 10t \end{matrix} \right ) + c_{2} \left ( \begin{matrix} \left [ \begin{matrix} 5 \\ 0 \end{matrix} \right ]\cos 10t + \left [ \begin{matrix} 3 \\ 4 \end{matrix} \right ] \sin 10t \end{matrix} \right )To solve the given initial value problem it remains only to determine values of the coefficients c_{1} and c_{2}. The initial condition x(0) = [4 2]^{T} readily yields c_{1} = c_{2} = \frac{1}{2} , and with these values Eq. (50) becomes (in scalar form)
x_{1}(t) = 4 \cos 10t – \sin 10t.
x_{2}(t) = 2 \cos 10t + 2 \sin 10t. (51)