Question 16.18: Solve the wave equation ∂²u/∂t² = 4∂²u/∂x² with initial cond...

Solve the wave equation \frac{\partial^2 u}{\partial t^2}=4 \frac{\partial^2 u}{\partial x^2}  with

initial conditions u(x, 0)=\left\{\begin{array}{ll} 0.1(x) & 0 \leq x \leq 1 / 2 \\ 0.1(1-x) & 1 / 2 \leq x \leq 1 \end{array} \text { and }\left.\frac{\partial u}{\partial t}\right|_{t=0}=0\right.

boundary conditions u(0, t) = u(1, t) = 0  t ≥ 0 .

Take the step size for t is 0.1, and step size for x is 0.25. Use explicit scheme to compute the solution up to time t = 0.3. Use central difference formula for the derivative term in the initial condition.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

It is given that step size for t is 0.1 (k = 0.1) and step size for x is 0.25 (h = 0.25). So, we have x = 0, 0.25, 0.5, 0.75, 1 and t = 0, 0.1, 0.2, 0.3.

Using the initial condition

u(x, 0)= \begin{cases}0.1(x) & 0 \leq x \leq 1 / 2 \\ 0.1(1-x) & 1 / 2 \leq x \leq 1\end{cases}

and boundary conditions

u(0, t) = u(1, t) = 0            t ≥ 0,

we have following table for values of u_{i, j}=u\left(x_i, t_j\right)

4(1) 3(0.75) 2(0.5) 1(0.25) 0 (0) j(t)     \     i(x)
0 0.025 0.05 0.025 0 0 (0)
0 . . . 0 1 (0.1)
0 . . . 0 2 (0.2)
0 . . . 0 3(0.3)
0 . . . 0 4(0.4)

The explicit scheme (16.88) for the solution of wave equation is as follows

u_{i, j+1}=r\left(u_{i+1, j}+u_{i-1, j}\right)+2(1-r) u_{i, j}-u_{i, j-1}            (16.88)

Using r=\frac{c k^2}{h^2}=4 \frac{(0.1)^2}{(0.25)^2}=0.64 , we have

u_{i, j+1}=0.64\left(u_{i+1, j}+u_{i-1, j}\right)+0.72 u_{i, j}-u_{i, j-1}         (16.91)

Equation (16.91) can be used to compute various nodal values for different j.

j = 1.

At time t = 0, the initial condition is \left.\frac{\partial u}{\partial t}\right|_{t=0}=0 . The central difference formula provides the following equation

\left.\frac{\partial u}{\partial t}\right|_{t=0}=\left.\frac{u_{i, j+1}-u_{i, j-1}}{2 k}\right|_{j=0}=\left.\frac{u_{i, 1}-u_{i,-1}}{2 k}\right|_{j=0}=0

\Rightarrow u_{i, 1}=u_{i,-1}          (16.92)

The scheme (16.91) for j = 0 is given by

u_{i, 1}=0.64\left(u_{i+1,0}+u_{i-1,0}\right)+0.72 u_{i, 0}-u_{i,-1}

Using Eq. (16.92), we have

u_{i, 1}=0.32\left(u_{i+1,0}+u_{i-1,0}\right)+0.36 u_{i, 0}

For i = 1, 2, 3, we can easily obtain the following values

\begin{aligned} &u_{1,1}=0.32\left(u_{2,0}+u_{0,0}\right)+0.36 u_{1,0}=0.32(0.05+0)+0.36(0.025)=0.025 \\ &u_{2,1}=0.32\left(u_{3,0}+u_{1,0}\right)+0.36 u_{2,0}=0.32(0.025+0.025)+0.36(0.05)=0.034 \\ &u_{3,1}=0.32\left(u_{4,0}+u_{2,0}\right)+0.36 u_{3,0}=0.32(0+0.05)+0.36(0.025)=0.025 \end{aligned}

The following table shows these values in the second row.

4(1) 3(0.75) 2(0.5) 1(0.25) 0 (0) j(t)     \     i(x)
0 0.025 0.05 0.025 0 0 (0)
0 0.025 0.034 0.025 0 1 (0.1)
0 0 2 (0.2)
0 0 3(0.3)

j = 2,
The explicit scheme (16.91) for j = 1 gives following equation

u_{i, 2}=0.64\left(u_{i+1,1}+u_{i-1,1}\right)+0.72 u_{i, 1}-u_{i, 0}

For i = 1, 2, 3 , we can easily obtain the following values

\begin{aligned} &u_{1,2}=0.64\left(u_{2,1}+u_{0,1}\right)+0.72 u_{1,1}-u_{1,0}=0.64(0.034+0)+0.72(0.025)-0.025=0.01476 \\ &u_{2,2}=0.64\left(u_{3,1}+u_{1,1}\right)+0.72 u_{2,1}-u_{2,0}=0.64(0.025+0.025)+0.72(0.034)-0.05=0.00648 \\ &u_{3,2}=0.64\left(u_{4,1}+u_{2,1}\right)+0.72 u_{3,1}-u_{3,0}=0.64(0+0.034)+0.72(0.025)-0.025=0.01476 \end{aligned}

4(1) 3(0.75) 2(0.5) 1(0.25) 0(0) j(t)     \     i(x)
0 0.025 0.05 0.025 0 0 (0)
0 0.025 0.034 0.025 0 1 (0.1)
0 0.01476 0.00648 0.01476 0 2 (0.2)
0 0 3(0.3)

j = 3,

For j = 2, the explicit scheme (16.91) becomes

u_{i, 3}=0.64\left(u_{i+1,2}+u_{i-1,2}\right)+0.72 u_{i, 2}-u_{i, 1}

For i = 1, 2, 3 , the following values are obtained

\begin{aligned} u_{1,3} &=0.64\left(u_{2,2}+u_{0,2}\right)+0.72 u_{1,2}-u_{1,1}=0.64(0.00648+0)+0.72(0.01476)-0.025 \\ &=-0.0102256 \\ u_{2,3} &=0.64\left(u_{3,2}+u_{1,2}\right)+0.72 u_{2,2}-u_{2,1}=0.64(0.01476+0.01476)+0.72(0.00648)-0.034 \\ &=-0.0104416 \\ u_{3,3} &=0.64\left(u_{4,2}+u_{2,2}\right)+0.72 u_{3,2}-u_{3,1}=0.64(0+0.00648)+0.72(0.01476)-0.025 \\ &=-0.0102256 \end{aligned}

4(1) 3(0.75) 2(0.5) 1(0.25) 0(0) j(t)   \   i(x)
0 0.025 0.05 0.025 0 0 (0)
0 0.025 0.034 0.025 0 1 (0.1)
0 0.01476 0.00648 0.01476 0 2 (0.2)
0 –0.0102256 –0.0104416 –0.0102256 0 3(0.3)

Related Answered Questions