Question 7.7.4: Solving an Inverse Trigonometric Equation Using an Identity ...

Solving an Inverse Trigonometric Equation Using an Identity

Solve \arcsin x – \arccos x =\frac{π}{6} .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Isolate one inverse function on one side of the equation.

\arcsin x – \arccos x = \frac{π}{6}          Original equation

\arcsin x = \arccos x + \frac{π}{6}        Add arccos x. (1)

x = \sin (\arccos x +\frac{π}{6})         Definition of arcsine

Let u = \arccos x. The arccosine function yields angles in quadrants I and II, so 0 ≤ u ≤ π by definition.

x = \sin (u + \frac{π}{6})                                    Substitute.

x = \sin u \cos\frac{π}{6} + \cos u \sin \frac{π}{6}           Sine sum identity (2)

Use equation (1) and the definition of the arcsine function.

-\frac{π}{2} ≤ \arccos x +\frac{π}{6} ≤ \frac{π}{2}            Range of arcsine is [ – \frac{π}{2} , \frac{π}{2} ] .

– \frac{2π}{3} ≤\arccos x ≤ \frac{π}{3}                    Subtract \frac{π}{6} from each part.

Because both 0 ≤ \arccos x ≤ π and – \frac{2π}{3}≤ \arccos x ≤ \frac{π}{3}, the intersection yields 0 ≤ \arccos x ≤ \frac{π}{3} . This places u in quadrant I, and we can sketch the triangle in Figure 40. From this triangle we find that \sin u =\sqrt{1 – x²}. Now substitute into equation (2) using \sin u =\sqrt{1 – x²} , \sin \frac{π}{6} =\frac{ 1}{ 2} , \cos \frac{π}{6} = \frac{\sqrt{3}}{ 2} , and \cos u = x.

x = \sin u \cos \frac{π}{6}+ \cos u \sin \frac{π}{6}        (2)

x = ( \sqrt{1 – x²}) \frac{\sqrt{3}}{ 2} + x • \frac{1}{2}                 Substitute.

2x = ( \sqrt{1 – x²} )\sqrt{3} + x                   Multiply by 2.

x = ( \sqrt{3}) \sqrt{1 – x²}                                Subtract x; commutative property

x² = 3(1 – x²)                                     Square each side; (ab)² = a² b²

\fbox{Square each factor.}

x² = 3 – 3x²                                        Distributive property

x² = \frac{3}{4}                                              Add 3x². Divide by 4.

x = \frac{\sqrt{3}}{ 4}                                           Take the square root on each side.

\fbox{Choose the positive square root, x > 0.}

x = \frac{\sqrt{3}}{ 2}                                         Quotient rule: \sqrt[n]{\frac{a}{b} } =\frac{\sqrt[n]{a} }{\sqrt[n]{b} }

CHECK        A check is necessary because we squared each side when solving the equation.

\arcsin x -\arccos x = \frac{π}{6}               Original equation

\arcsin \frac{\sqrt{3}}{ 2} – \arccos \frac{\sqrt{3}}{ 2}≟ \frac{π}{6}            Let x = \frac{\sqrt{3}}{ 2} .

\frac{π}{3}- \frac{π}{6} ≟\frac{π}{6}                                     Substitute inverse values.

\frac{π}{6} = \frac{π}{6}         ✓                                  True

The solution set is { \frac{\sqrt{3}}{ 2}} .

40

Related Answered Questions

Question: 7.6.4

Verified Answer:

We multiply the factors on the left and subtract 1...
Question: 7.6.5

Verified Answer:

We must rewrite the equation in terms of a single ...
Question: 7.6.3

Verified Answer:

\tan² x + \tan x - 2 = 0           ...
Question: 7.6.2

Verified Answer:

\sin θ \tan θ = \sin θ             ...