Question 5.12: Starting with the state vector determined in Example 5.11, u...

Starting with the state vector determined in Example 5.11, use Algorithm 5.6 to improve the vector to five significant figures.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Step 1:
r_{2}=\left\| r_{2}\right\|=\sqrt{5659.1^{2}+6533.8^{2}+3270.1^{2}}=9241.8 km

v_{2}=\left\| v _{2}\right\|=\sqrt{(-3.9080)^{2}+5.0573 + (-2.2222)^{2}}=6.7666 km / s

Step 2:
\alpha=\frac{2}{r_{2}}-\frac{v_{2}^{2}}{\mu}=\frac{2}{9241.8}-\frac{6.7666^{2}}{398600}=1.0154 \times 10^{-4} km ^{-1}

Step 3:
v_{r 2}=\frac{ v _{2} \cdot r _{2}}{r_{2}}=\frac{(-3.9080) \cdot 5659.1+5.0573 \cdot 6533.8+(-2.2222) \cdot 3270.1}{9241.8} = 0.39611km/s

Step 4:

The universal Kepler’s equation at times t_{1} \text { and } t_{3}, respectively, becomes

\sqrt{398600} \tau_{1}=\frac{9241.8 \cdot 0.39611}{\sqrt{398600}} \chi_{1}^{2} C\left(1.0154 \times 10^{-4}\chi_{1}^{2}\right)+\left(1-1.0154 \times 10^{-4} \cdot 9241.8\right) \chi_{1}^{3} S\left(1.0154 \times 10^{-4} \chi_{1}^{2}\right)+9241.8 \chi_{1}

 

\sqrt{398600} \tau_{3}=\frac{9241.8 \cdot 0.39611}{\sqrt{398600}} \chi_{3}^{2} C\left(1.0154 \times 10^{-4} \chi_{3}^{2}\right)+\left(1-1.0154 \times 10^{-4} \cdot 9241.8\right) \chi_{3}^{3} S\left(1.0154 \times 10^{-4} \chi_{3}^{2}\right)+9241.8 \chi_{3}

or
631.35 \tau_{1}=5.7983 \chi_{1}^{2} C\left(1.0154 \times 10^{-4} \chi_{1}^{2}\right)+0.061594 \chi_{1}^{3} S\left(1.0154 \times 10^{-4} \chi_{1}^{2}\right)+9241.8 \chi_{1}

631.35 \tau_{3}=5.7983 \chi_{3}^{2} C\left(1.0154 \times 10^{-4} \chi_{3}^{2}\right)+0.061594 \chi_{1}^{3} S\left(1.0154 \times 10^{-4} \chi_{3}^{2}\right)+9241.8 \chi_{3}
Applying Algorithm 3.3 to each of these equations yields

\chi_{1}=-8.0882 \sqrt{ km }

 

\chi_{3}=8.1404 \sqrt{ km }

Step 5:

f_{1}=1-\frac{\chi_{1}^{2}}{r_{2}} C\left(\alpha \chi_{1}^{2}\right)=1-\frac{(-8.0882)^{2}}{9241.8} \cdot \overbrace{C\left[1.0154 \times 10^{-4}(-8.0882)^{2}\right.}]^{0.49972}=0.99646

 

g_{1}=\tau_{1}-\frac{1}{\sqrt{\mu}} \chi_{1}^{3} S\left(\alpha \chi_{1}^{2}\right)=-118.1-\frac{1}{\sqrt{398600}}(-8.0882)^{3}\times \overbrace{S\left[1.0154 \times 10^{-4}(-8.0882)^{2}\right]}^{0.16661}=-117.96 s

and
f_{3}=1-\frac{\chi_{3}^{2}}{r_{2}} C\left(\alpha \chi_{3}^{2}\right)=1-\frac{8.1404^{2}}{9241.8} \cdot \overbrace{C\left[1.0154 \times 10^{-4} \cdot 8.1404^{2}\right]}^{0.49972}=0.99642

 

g_{3}=\tau_{3}-\frac{1}{\sqrt{\mu}} \chi_{3}^{3} S\left(\alpha \chi_{3}^{2}\right)=-118.1-\frac{1}{\sqrt{398600}} 8.1404^{3} \times \overbrace{S\left[1.0154 \times 10^{-4}(-8.0882)^{2}\right]}^{0.16661}=119.33

It turns out that the procedure converges more rapidly if the Lagrange coefficients are set equal to the average of those computed for the current step and those computed for the previous step. Thus, we set

f_{1}=\frac{0.99648+0.99646}{2}=0.99647

 

g_{1}=\frac{-117.97+(-117.96)}{2}=-117.96 s

 

f_{3}=\frac{0.99642+0.99641}{2}=0.99641

 

g_{3}=\frac{119.3+119.3}{2}=119.3 s

Step 6:

c_{1}=\frac{119.3}{(0.99647)(119.3)-(0.99641)(-117.96 s )}=0.50467

 

c_{3}=-\frac{-117.96}{(0.99647)(119.3)-(0.99641)(-117.96)}=0.49890

Step 7:

\varrho_{1}=\frac{1}{-0.0015198}\left(-782.15+\frac{1}{0.50467} 784.72-\frac{0.49890}{0.50467} 787.31\right)=3650.7 km

\varrho_{2}=\frac{1}{-0.0015198}(-0.50467 \cdot 1646.5+1651.5-0.49890 \cdot 1656.6)=3877.2 km

\varrho_{3}=\frac{1}{-0.0015198}\left(-\frac{0.50467}{0.49890} 887.10+\frac{1}{0.49890} 889.60-892.13\right)=4186.2 km

Step 8:

r _{1}=(3489.8 \hat{ I }+3430.2 \hat{ J }+4078.5 \hat{ K })+3650.7(0.71643 \hat{ I }+0.68074 \hat{ J }-0.15270 \hat{ K })

=6105.3 \hat{ I }+5915.4 \hat{ J }+3521.1 \hat{ K } ( km )

r _{2}=(3460.1 \hat{ I }+3460.1 \hat{ J }+4078.5 \hat{ K })+3877.2(0.56897 \hat{ I }+0.79531 \hat{ J }-0.20917 \hat{ K })

=5662.1 \hat{ I }+6543.7 \hat{ J }+3267.5 \hat{ K } ( km )

r _{3}=(3429.9 \hat{ I }+3490.1 \hat{ J }+4078.5 \hat{ K })+4186.2(0.41841 \hat{ I }+0.87007 \hat{ J }-0.26059 \hat{ K })

=5181.4 \hat{ I }+7132.4 \hat{ J }+2987.6 \hat{ K } ( km )

Step 9:

v _{2}=\frac{1}{0.99647 \cdot 119.3-0.99641(-117.96)} \times[-0.99641(6105.3 \hat{ I }+5915.4 \hat{ J }+3521.1 \hat{ K })+0.99647(5181.4 \hat{ I }+7132.4 \hat{ J }+2987.6 \hat{ K })] =-3.8918 \hat{ I }+5.1307 \hat{ J }-2.2472 \hat{ K }( km / s )

This completes the first iteration.
The updated position r _{2} and velocity v _{2} are used to repeat the procedure beginning at step1.The results of the first and subsequent iterations are shown in Table5.2. Convergence to five significant figures in the slant ranges \varrho_{1}, \varrho_{2} \text { and } \varrho_{3} occurs in four steps, at which point the state vector is
r _{2}=5662.1 \hat{ I }+6538.0 \hat{ J }+3269.0 \hat{ K }( km )

v _{2}=-3.8856 \hat{ I }+5.1214 \hat{ J }-2.2433 \hat{ K }( km / s )
Table 5.2 Key results at each step of the iterative procedure
Step \chi_{1} \chi_{3} f_{1} g_{1} f_{3} g_{3} \varrho_{1} \varrho_{2} \varrho_{3}
1 −8.0882 8.1404 0.99647 −117.97 0.99641 119.33 3650.7 3877.2 4186.2
2 −8.0818 8.1282 0.99647 −117.96 0.99642 119.33 3643.8 3869.9 4178.3
3 −8.0871 8.1337 0.99647 −117.96 0.99642 119.33 3644.0 3870.1 4178.6
4 −8.0869 8.1336 0.99647 −117.96 0.99642 119.33 3644.0 3870.1 4178.6

Using Algorithm 4.1 we find that the orbital elements are
a = 10000km     (h = 62818km²/s)
e = 0.1000
i = 30°
Ω = 270°
ω = 90°
θ = 45.01°

Related Answered Questions

Question: 5.5

Verified Answer:

Proceeding as in Example 5.4 we find that the Juli...