Question 10.6.1: Suppose the shear building of Example 10.5-1 is acted on by ...

Suppose the shear building of Example 10.5-1 is acted on by the force vector

P=[P1P2P3]=[0100(1t)0] kNP=\left[\begin{matrix} P_1 \\ P_2 \\ P_3 \end{matrix} \right]=\left[\begin{matrix} 0 \\ 100(1-t) \\ 0 \end{matrix} \right] \ kN

during the time interval 0t10\leq t\leq 1 s.
Determine the motion of each lumped mass within the interval, if it is known that at t = 0, the structure is at rest.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The uncoupled equations are as given by Eqns 10.6-3,

d2q1dt2+ω12q1= 1z1P1+ 1z2P2++ 1znPn\frac{d^2q_1}{dt^2}+\omega ^{2}_{1}q_1= \ _1z_1P_1+ \ _1z_2P_2+\cdot \cdot \cdot + \ _1z_nP_n
d2q2dt2+ω22q2= 2z1P1+ 2z2P2++ 2znPn\frac{d^2q_2}{dt^2}+\omega ^{2}_{2}q_2= \ _2z_1P_1+ \ _2z_2P_2+\cdot \cdot \cdot + \ _2z_nP_n
\vdots
d2qndt2+ωn2qn= nz1P1+ nz2P2++ nznPn\frac{d^2q_n}{dt^2}+\omega ^{2}_{n}q_n= \ _nz_1P_1+ \ _nz_2P_2+\cdot \cdot \cdot + \ _nz_nP_n               (10.6-3)

in which the force components should be expressed in newtons and not kilonewtons (in imperial units, they should be expressed in the pound-force unit lbf). Using the value of ω2\omega^2 and Z in Example 10.5-1, Eqns 10.5-36 and 10.5-38, we have

ω2=[ω12000ω22000ω32]=[16700010000001710]s2\omega^2=\left[\begin{matrix} \omega^{2}_{1} & 0 & 0 \\ 0 & \omega^{2}_{2} & 0 \\ 0 & 0 & \omega^{2}_{3} \end{matrix} \right]=\left[\begin{matrix} 167 & 0 & 0 \\ 0 & 1000 & 0 \\ 0 & 0 & 1710 \end{matrix} \right]s^{-2}            (10.5-36)

Z=[1e1L12e1L23e1L31e2L12e2L23e2L31e3L12e3L23e3L3]=[5.110.310.911.15.110.014.215.47.9]×103 kg1/2Z=\left[\begin{matrix} \frac{_1e_1}{L_1} & \frac{_2e_1}{L_2} & \frac{_3e_1}{L_3} \\\\ \frac{_1e_2}{L_1} & \frac{_2e_2}{L_2} & \frac{_3e_2}{L_3} \\\\ \frac{_1e_3}{L_1} & \frac{_2e_3}{L_2} & \frac{_3e_3}{L_3} \end{matrix} \right]=\left[\begin{matrix} 5.1 & 10.3 & 10.9 \\\\ 11.1 & 5.1 & -10.0 \\\\ 14.2 & -15.4 & 7.9 \end{matrix} \right]\times 10^{-3} \ kg^{-1/2}      (10.5-38)

q¨1+167q1=1110(1t)\ddot{q}_1+167q_1=1110(1-t)    (10.6-4(a))

q¨2+1000q2=510(1t)\ddot{q}_2+1000q_2=510(1-t)    (10.6-4(b))

q¨3+1710q3=1000(1t)\ddot{q}_3+1710q_3=-1000(1-t)   (10.6-4(c))

The solution of each of these three equations consists of a complementary function (of the standard form in Eqns 10.5-30) and a particular integral, namely

q1=A1sinω1t+B1cosω1t,q_1=A_1\sin \omega _1t+B_1\cos \omega _1t,  or  C1sin(ω1t+α1), C_1\sin (\omega _1t+\alpha _1),  0r  D1cos(ω1t+β1)D_1\cos (\omega _1t+\beta _1)
q2=A2sinω2t+B2cosω2t,q_2=A_2\sin \omega _2t+B_2\cos \omega _2t,  or  C2sin(ω2t+α2), C_2\sin (\omega _2t+\alpha _2),  0r  D2cos(ω2t+β2)D_2\cos (\omega _2t+\beta _2)
\vdots
qn=Ansinωnt+Bncosωnt,q_n=A_n\sin \omega _nt+B_n\cos \omega _nt,  or  Cnsin(ωnt+αn), C_n\sin (\omega _nt+\alpha _n),  0r  Dncos(ωnt+βn)D_n\cos (\omega _nt+\beta _n)  (10.5-30)

q1=A1sin(167)t+B1cos(167)t+1110(1t)167q_1=A_1\sin √(167)t+B_1\cos √(167)t+\frac{1110(1-t)}{167}

q2=A2sin(1000)t+B2cos(1000)t+510(1t)1000q_2=A_2\sin √(1000)t+B_2\cos √(1000)t+\frac{510(1-t)}{1000}

q3=A3sin(1710)t+B3cos(1710)t1000(1t)1710q_3=A_3\sin √(1710)t+B_3\cos √(1710)t-\frac{1000(1-t)}{1710}             (10.6-5)

Differentiating with respect to t,

q˙1=A1(167)cos(167)tB1(167)sin(167)t6.65\dot{q}_1=A_1 √(167)\cos√(167)t-B_1 √(167)\sin √(167)t-6.65

q˙2=A2(1000)cos(1000)tB2(1000)sin(1000)t0.51\dot{q}_2=A_2 √(1000)\cos√(1000)t-B_2 √(1000)\sin √(1000)t-0.51

q˙3=A3(1710)cos(1710)tB3(1710)sin(1710)t+0.59\dot{q}_3=A_3 √(1710)\cos√(1710)t-B_3 √(1710)\sin √(1710)t+0.59                     (10.6-6)

The initial conditions on q and q˙\dot{q} are determined from those prescribed on x and x˙\dot{x}, using Eqns 10.5-40 of Example 10.5-1.

[q1(τ)q2(τ)q3(τ)]=[5.110.310.911.15.110.014.215.47.9]T[400040002][x1(τ)x2(τ)x3(τ)]kg1/2 m\left[\begin{matrix} {q}_{1(\tau )} \\ {q}_{2(\tau )} \\ {q}_{3(\tau )} \end{matrix} \right]=\left[\begin{matrix} 5.1 & 10.3 & 10.9 \\ 11.1 & 5.1 & -10.0 \\ 14.2 & -15.4 & 7.9 \end{matrix} \right]^T\left[\begin{matrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{matrix} \right]\left[\begin{matrix} {x}_{1(\tau )} \\ {x}_{2(\tau )} \\ {x}_{3(\tau )} \end{matrix} \right]kg^{1/2} \ m            (10.5-40)

In this particular case, x and x˙\dot{x} are both zero at t = 0; hence by inspection, at t = 0:

[q1q2q3]=0\left[\begin{matrix} q_1 \\ q_2 \\ q_3 \end{matrix} \right]=0;               [q˙1q˙2q˙3]=0\left[\begin{matrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \end{matrix} \right]=0           (10.6-7)

Substituting q1q_1 = 0 and t = 0 into the first equation in Eqns 10.6-5,

B1=6.65B_1=-6.65

Substituting q˙1=0\dot{q}_1 = 0, and t = 0 into the first equation in Eqns 10.6-6,

A1=6.65/(167)=0.515A_1=6.65/√(167)=0.515

The other four constants of integrations can be determined in a similar way, resulting in:

[q1q2q3]=[0.515sin(167)t6.65cos(167)t+6.65(1t)0.016sin(1000)t0.51cos(1000)t+0.51(1t)0.014sin(1710)t+0.59cos(1710)t+0.59(1t)]kg1/2 m\left[\begin{matrix} q_1 \\ q_2 \\ q_3 \end{matrix} \right]=\left[\begin{matrix} 0.515\sin √(167)t-6.65\cos √(167)t+6.65(1-t) \\ 0.016\sin √(1000)t-0.51\cos √(1000)t+0.51(1-t) \\ -0.014\sin √(1710)t+0.59\cos √(1710)t+0.59(1-t) \end{matrix} \right] kg^{1/2} \ m    (10.6-8)

whence, from Eqns 10.5-32 and 10.5-38

x=Zq                 (10.5-32)

[x1x2x3]=[5.110.310.911.15.110.014.215.47.9]×103[q1q2q3]m\left[\begin{matrix} x_1 \\ x_2 \\ x_3 \end{matrix} \right]=\left[\begin{matrix} 5.1 & 10.3 & 10.9 \\ 11.1 & 5.1 & -10.0 \\ 14.2 & -15.4 & 7.9 \end{matrix} \right] \times 10^{-3}\left[\begin{matrix} q_1 \\ q_2 \\ q_3 \end{matrix} \right] m                 (10.6-9)

where q is as given in Eqn 10.6-8.

Related Answered Questions