The uncoupled equations are as given by Eqns 10.6-3,
dt2d2q1+ω12q1= 1z1P1+ 1z2P2+⋅⋅⋅+ 1znPn
dt2d2q2+ω22q2= 2z1P1+ 2z2P2+⋅⋅⋅+ 2znPn
⋮
dt2d2qn+ωn2qn= nz1P1+ nz2P2+⋅⋅⋅+ nznPn (10.6-3)
in which the force components should be expressed in newtons and not kilonewtons (in imperial units, they should be expressed in the pound-force unit lbf). Using the value of ω2 and Z in Example 10.5-1, Eqns 10.5-36 and 10.5-38, we have
ω2=⎣⎢⎡ω12000ω22000ω32⎦⎥⎤=⎣⎢⎡16700010000001710⎦⎥⎤s−2 (10.5-36)
Z=⎣⎢⎢⎢⎢⎢⎡L11e1L11e2L11e3L22e1L22e2L22e3L33e1L33e2L33e3⎦⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎡5.111.114.210.35.1−15.410.9−10.07.9⎦⎥⎥⎥⎥⎥⎤×10−3 kg−1/2 (10.5-38)
q¨1+167q1=1110(1−t) (10.6-4(a))
q¨2+1000q2=510(1−t) (10.6-4(b))
q¨3+1710q3=−1000(1−t) (10.6-4(c))
The solution of each of these three equations consists of a complementary function (of the standard form in Eqns 10.5-30) and a particular integral, namely
q1=A1sinω1t+B1cosω1t, or C1sin(ω1t+α1), 0r D1cos(ω1t+β1)
q2=A2sinω2t+B2cosω2t, or C2sin(ω2t+α2), 0r D2cos(ω2t+β2)
⋮
qn=Ansinωnt+Bncosωnt, or Cnsin(ωnt+αn), 0r Dncos(ωnt+βn) (10.5-30)
q1=A1sin√(167)t+B1cos√(167)t+1671110(1−t)
q2=A2sin√(1000)t+B2cos√(1000)t+1000510(1−t)
q3=A3sin√(1710)t+B3cos√(1710)t−17101000(1−t) (10.6-5)
Differentiating with respect to t,
q˙1=A1√(167)cos√(167)t−B1√(167)sin√(167)t−6.65
q˙2=A2√(1000)cos√(1000)t−B2√(1000)sin√(1000)t−0.51
q˙3=A3√(1710)cos√(1710)t−B3√(1710)sin√(1710)t+0.59 (10.6-6)
The initial conditions on q and q˙ are determined from those prescribed on x and x˙, using Eqns 10.5-40 of Example 10.5-1.
⎣⎢⎡q1(τ)q2(τ)q3(τ)⎦⎥⎤=⎣⎢⎡5.111.114.210.35.1−15.410.9−10.07.9⎦⎥⎤T⎣⎢⎡400040002⎦⎥⎤⎣⎢⎡x1(τ)x2(τ)x3(τ)⎦⎥⎤kg1/2 m (10.5-40)
In this particular case, x and x˙ are both zero at t = 0; hence by inspection, at t = 0:
⎣⎢⎡q1q2q3⎦⎥⎤=0; ⎣⎢⎡q˙1q˙2q˙3⎦⎥⎤=0 (10.6-7)
Substituting q1 = 0 and t = 0 into the first equation in Eqns 10.6-5,
B1=−6.65
Substituting q˙1=0, and t = 0 into the first equation in Eqns 10.6-6,
A1=6.65/√(167)=0.515
The other four constants of integrations can be determined in a similar way, resulting in:
⎣⎢⎡q1q2q3⎦⎥⎤=⎣⎢⎡0.515sin√(167)t−6.65cos√(167)t+6.65(1−t)0.016sin√(1000)t−0.51cos√(1000)t+0.51(1−t)−0.014sin√(1710)t+0.59cos√(1710)t+0.59(1−t)⎦⎥⎤kg1/2 m (10.6-8)
whence, from Eqns 10.5-32 and 10.5-38
x=Zq (10.5-32)
⎣⎢⎡x1x2x3⎦⎥⎤=⎣⎢⎡5.111.114.210.35.1−15.410.9−10.07.9⎦⎥⎤×10−3⎣⎢⎡q1q2q3⎦⎥⎤m (10.6-9)
where q is as given in Eqn 10.6-8.