Question 18.CS.8: Swivel Hook Design Analysis A crane hook for the winch crane...

Swivel Hook Design Analysis

A crane hook fort he winch crane, shown in Figure 18.8a, is rated at P = 3 kN. Determine the tangential stresses at points A and B using Winkler’s formula. Note that, for a large number of manufactured crane hooks, the critical section AB can be closely approximated by a trapezoidal area with half an ellipse at the inner radius and an arc of a circle at the outer radius, as shown in Figure 18.8b. The solution for standardized crane hooks is expedited by readily available computer programs.

Assumptions: The critical section AB is taken to be trapezoidal. The hook is made of A1SI 1020-HR steel with a safety factor of n against yielding.

Given:

\begin{aligned} r_i &=20  mm , \quad b_1=30  mm , \quad b_2=10  mm \\ h &=42  mm , \quad n=5, \\ S_y &=210  MPa , \end{aligned} (from Table B.3)

F18.8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

See Figures 18.7 and 18.8; Section 16.8.

Referring to Figure 18.8b, we obtain the following quantities. The cross-sectional area is

A=\frac{1}{2}\left(b_1+b_2\right) h=\frac{1}{2}(30+10)(42)=840  mm ^2

The distance to the centroid C from the inner edge is

\bar{y}=\frac{h\left(b_1+2 b_2\right)}{3\left(b_1+b_2\right)}=\frac{42(30+2 \times 10)}{3(30+10)}=17.5  mm

Hence,

\bar{r}=r_i+\bar{y}=20+17.5=37.5  mm

By case E of Table 16.1, the radius of the neutral axis, with r_{o} = r_{i} + h = 62 mm, is then

\begin{aligned} R &=\frac{A}{\frac{1}{h}\left[\left(b_1 r_o-b_2 r_i\right) \ln \frac{r_o}{r_i}-h\left(b_1-b_2\right)\right]} \\ &=\frac{840}{\frac{1}{42}\left[(30 \times 62-10 \times 20) \ln \frac{62}{20}-42(30-10)\right]} \\ &=33.9843 \end{aligned}

Equation 16.51 leads to

e=\bar{r}-R=37.5-33.9843=3.5157  mm

The circumferential stresses are determined through the use of Equations 16.55 with a tensile normal load P and bending moment M = –PR. Therefore,

\left(\sigma_\theta\right)_A=-\frac{P}{A}-\frac{P \bar{r}\left(R-r_i\right)}{A e r_i}=-\frac{P}{A}\left[1+\frac{\bar{r}\left(R-r_i\right)}{e r_i}\right]           (16.55a)

\left(\sigma_\theta\right)_B=-\frac{P}{A}-\frac{P \bar{r}\left(R-r_o\right)}{A e r_o}=-\frac{P}{A}\left[1+\frac{\bar{r}\left(R-r_o\right)}{e r_o}\right]         (16.55b)

\begin{array}{l} \left(\sigma_\theta\right)_A=\frac{P}{A}\left[1+\frac{\bar{r}\left(R-r_i\right)}{e r_i}\right] \\ \left(\sigma_\theta\right)_B=\frac{P}{A}\left[1+\frac{\bar{r}\left(R-r_o\right)}{e r_0}\right] \end{array}

Introducing the required values into the preceding expression, we have

\begin{aligned} \left(\sigma_\theta\right)_A &=\frac{3000}{840\left(10^{-6}\right)}\left[1+\frac{37.5(33.9843-20)}{3.5157(20)}\right] \\ &=30.21  MPa \end{aligned}

\begin{aligned} \left(\sigma_\theta\right)_B &=\frac{3000}{840\left(10^{-6}\right)}\left[1+\frac{37.5(33.9843-62)}{3.5157(62)}\right] \\ &=-13.64  MPa \end{aligned}

where a minus sign means compression.

Comment: The allowable stress \sigma _{all}= 210/5 = 42 MPa is larger than the maximum stress of 30.21 MPa. That is, the crane hook can support a load of 3 kN with a factor of safety of 5 without yielding.

Table 16.1
Properties for a Variety of Cross-Sectional Shapes
Cross Section Radius of Neutral Surface
\begin{array}{l} R=\frac{h}{\ln \frac{r_o}{r_i}} \\ A=b h \end{array}
\begin{array}{l} R=\frac{A}{2 \pi\left(\bar{r}-\sqrt{\bar{r}^2-c^2}\right)} \\ A=\pi c^2 \end{array}
\begin{array}{l} R=\frac{A}{\frac{2 \pi b}{a}\left(\bar{r}-\sqrt{\bar{r}^2-a^2}\right)} \\ A=\pi a b \end{array}
\begin{array}{l} R=\frac{A}{\frac{b r_o}{h}\left\lgroup \ln \frac{r_0}{r_i} \right\rgroup -b} \\ A=\frac{1}{2} b h \end{array}
\begin{array}{l} R=\frac{1}{\frac{1}{h}\left[\left(b_1 r_o-b_2 r_i\right) \cdot \ln \frac{r_0}{r_i}-h\left(b_1-b_2\right)\right]} \\ A=\frac{1}{2}\left(b_1+b_2\right) h \end{array}
F18.7

Related Answered Questions