Question 16.4: Synchronous-Motor Performance A 480-V-rms 200-hp 60-Hz eight...

Synchronous-Motor Performance
A 480-V-rms 200-hp 60-Hz eight-pole delta-connected synchronous motor operates with a developed power (including losses) of 50 hp and a power factor of 90 percent leading. The synchronous reactance is Xs=1.4 ΩX_s = 1.4 \ \Omega.
a. Find the speed and developed torque.
b. Determine the values of Ia,Er\pmb{\text{I}}_a,\pmb{\text{E}}_r, and the torque angle.
c. Suppose that the excitation remains constant and the load torque increases until the developed power is 100 hp. Determine the new values of Ia,Er\pmb{\text{I}}_a,\pmb{\text{E}}_r, the torque angle, and the power factor.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. The speed of the machine is given by Equation 16.14:

ns=120fP=120(60)8=900 rpmωs=ns2π60=30π=94.25 rad/sn_s=\frac{120f}{P}=\frac{120(60)}{8}=900 \text{ rpm} \\ \omega_s=n_s\frac{2\pi}{60}=30\pi=94.25 \text{ rad/s}

For the first operating condition, the developed power is

Pdev1=50×746=37.3 kWP_{\text{dev1}}=50 \times 746=37.3 \text{ kW}

and the developed torque is

Tdev1=Pdev1ωs=37,30094.25=396 NmT_{\text{dev1}}=\frac{P_{\text{dev1}}}{\omega_s} =\frac{37,300}{94.25}=396 \text{ Nm}

b. The voltage rating refers to the rms line-to-line voltage. Because the windings are delta connected, we have Va=Vline=480 V rmsV_a = V_{\text{line}} = 480 \text{ V rms}. Solving Equation 16.44 for IaI_a and substituting values, we have

Pdev=Pin=3VaIacos(θ)(16.44)Ia1=Pdev13Vacos(θ1)=37,3003(480)(0.9)=28.78 A rmsP_{\text{dev}}=P_{\text{in}}=3V_aI_a\cos(\theta) \quad \quad \quad \quad \quad (16.44) \\ I_{a1}=\frac{P_{\text{dev1}}}{3V_a\cos(\theta_1)} =\frac{37,300}{3(480)(0.9)}=28.78 \text{ A rms}

Next, the power factor is cos(θ1)=0.9\cos(\theta_1)=0.9, which yields

θ1=25.84\theta_1=25.84^\circ

Because the power factor was given as leading, we know that the phase of Ia1\pmb{\text{I}}_{a1} is positive. Thus, we have

Ia1=28.78/25.84 A rms\pmb{\text{I}}_{a1}=28.78 \underline{/25.84^\circ} \text{ A rms}

Then from Equation 16.42, we have

Va=Er+jXsIa(16.42)Er1=Va1jXsIa=480j1.4(28.78/25.84)=497.6j36.3=498.9/4.168 V rms\pmb{\text{V}}_a=\pmb{\text{E}}_r+jX_s\pmb{\text{I}}_a \quad \quad \quad \quad \quad (16.42) \\ \pmb{\text{E}}_{r1}=\pmb{\text{V}}_{a1}-jX_s\pmb{\text{I}}_a=480-j1.4(28.78 \underline{/25.84^\circ}) \\ \quad \quad \quad =497.6-j36.3 \\ \quad =498.9 \underline{/-4.168^\circ} \text{ V rms}

Consequently, the torque angle is δ1=4.168\delta_1 = 4.168^\circ.
c. When the load torque is increased while holding excitation constant (i.e., the values of If,Br, and ErI_f, B_r, \text{ and } E_r are constant), the torque angle must increase. In Figure 16.21(b), we see that the developed power is proportional to sin(δ). Hence, we can write

sin(δ2)sin(δ1)=P2P1\frac{\sin(\delta_2)}{\sin(\delta_1)} =\frac{P_2}{P_1}

Solving for sin(δ2)\sin{(\delta_2)} and substituting values, we find that

sin(δ2)=P2P1sin(δ1)=100 hp50 hpsin(4.168)δ2=8.360\begin{matrix} \sin(\delta_2)&=&\frac{P_2}{P_1}\sin(\delta_1) =\frac{100 \text{ hp}}{50 \text{ hp}}\sin(4.168^\circ) \\ \delta_2&=&8.360^\circ \end{matrix}

Because ErE_r is constant in magnitude, we get

Er2=498.9/8.360 V rms\pmb{\text{E}}_{r2}=498.9 \underline{/-8.360^\circ} \text{ V rms}

(We know that Er2 lags Va=480/0\pmb{\text{E}}_{r2} \text{ lags } \pmb{\text{V}}_a=480 \underline{/0^\circ} because the machine is acting as a motor.)
Next, we can find the new current:

Ia2=VaEr2jXs=52.70/10.61 A rms\pmb{\text{I}}_{a2}=\frac{\pmb{\text{V}}_a-\pmb{\text{E}}_{r2}}{jX_s} =52.70 \underline{/10.61^\circ} \text{ A rms}

Finally, the new power factor is

cos(θ2)=cos(10.61)=98.3% leading\cos(\theta_2)=\cos(10.61^\circ)=98.3\% \text{ leading}

6.21b

Related Answered Questions