Question 19.9: The ABCD parameters of the two-port network in Fig. 19.34 ar...

The ABCD parameters of the two-port network in Fig. 19.34 are

\left[\begin{array}{cc} 4 & 20  \Omega \\ 0.1  S & 2 \end{array}\right]

The output port is connected to a variable load for maximum power transfer. Find R_L and the maximum power transferred.

19.34
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

What we need is to find the Thevenin equivalent (\pmb{Z_{Th}} \text{ and } \pmb{V_{Th}}) at the load or output port. We find \pmb{Z_{Th}} using the circuit in Fig. 19.35(a). Our goal is to get \pmb{Z_{Th}} = \pmb{V_2/I_2}. Substituting the given ABCD parameters into Eq. (19.22), we obtain

(19.22):            \pmb{V _1}= \pmb{A V _2- B I _2} \\\pmb{I _1}= \pmb{C V _2- D I _2}

\pmb{V _1}=4 \pmb{V _2}-20 \pmb{I _2}                    (19.9.1)

\pmb{I _1}=0.1 \pmb{V _2}-2 \pmb{I _2}                               (19.9.2)

At the input port, \pmb{V_1} = −10\pmb{I_1}. Substituting this into Eq. (19.9.1) gives

-10 \pmb{I _1}=4 \pmb{V _2}-20 \pmb{I _2}

or

\pmb{I _1}=-0.4 \pmb{V _2}+2 \pmb{I _2}                   (19.9.3)

Setting the right-hand sides of Eqs. (19.9.2) and (19.9.3) equal,

0.1 \pmb{V _2}-2 \pmb{I _2}=-0.4 \pmb{V _2}+2 \pmb{I _2} \quad \Rightarrow \quad 0.5 \pmb{V _2}=4 \pmb{I _2}

Hence,

\pmb{Z _{ Th }}=\pmb{\frac{ V _2}{ I _2}}=\frac{4}{0.5}=8  \Omega

To find \pmb{V_{Th}}, we use the circuit in Fig. 19.35(b). At the output port \pmb{I_2} = 0 and at the input port \pmb{V_1} = 50 − 10\pmb{I_1}. Substituting these into Eqs. (19.9.1) and (19.9.2),

50-10 \pmb{I _1}=4 \pmb{V _2}                     (19.9.4)

\pmb{I _1}=0.1 \pmb{V _2}                           (19.9.5)

Substituting Eq. (19.9.5) into Eq. (19.9.4),

50- \pmb{V _2}=4 \pmb{V _2} \quad \Rightarrow \quad \pmb{V _2}=10

Thus,

\pmb{V _{ Th }}= \pmb{V _2}=10  V

The equivalent circuit is shown in Fig. 19.35(c). For maximum power transfer,

R_L= \pmb{Z _{ Th }}=8  \Omega

From Eq. (4.24), the maximum power is

(4.24):                p_{\max }=\frac{V_{ Th }^2}{4 R_{ Th }}

P=I^2 R_L=\left(\frac{ \pmb{V _{ Th }}}{2 R_L}\right)^2 R_L=\frac{ \pmb{V ^2_{ Th }}}{4 R_L}=\frac{100}{4 \times 8}=3.125  W

19.35

Related Answered Questions

Question: 19.16

Verified Answer:

Notice that we used dc analysis in Example 19.15 b...
Question: 19.15

Verified Answer:

From Eq. (19.16), (19.16):  \pmb{h} _{11}=...
Question: 19.14

Verified Answer:

We can regard the given circuit in Fig. 19.46 as a...
Question: 19.12

Verified Answer:

This may be regarded as two two-ports in series. F...
Question: 19.11

Verified Answer:

Because no current can enter the input terminals o...
Question: 19.10

Verified Answer:

If A = 10, B = 1.5, C = 2, D = 4, the determinant ...
Question: 19.8

Verified Answer:

To determine A and C, we leave the output port ope...
Question: 19.7

Verified Answer:

In the s domain, 1 H \quad \Rightarrow \qu...