Question 14.E.A: The apparatus in Figure 14-7 was used to monitor the titrati...

The apparatus in Figure 14-7 was used to monitor the titration of 50.0 mL of 0.100 M AgNO_{3} with 0.200 M NaBr. Calculate the cell voltage at each volume of NaBr, and sketch the titration curve: 1.0, 12.5, 24.0, 24.9, 25.1, 26.0, and 35.0 mL.

FIGURE 14-7
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The reaction at the silver electrode (written as a reduction) is

Ag^{+} + e^{−} \rightleftharpoons  Ag(s), and the cell voltage is written as

E = E_{+}  −  E_{−} = E_{+}  −  E(S.C.E) = E_{+}  −  0.241

= (0.799 − 0.059  16 \log \frac{1}{[Ag^{+}]}) − 0.241

= 0.558 + 0.059  16 \log [Ag^{+}]

Titration reaction: Br^{−} + Ag^{+} → AgBr(s)              K_{sp} = 5.0 × 10^{−13}

The equivalence point is V_{e} = 25.0. Between 0 and 25 mL, there is unreacted Ag^{+} in the solution.

1.0 mL:    [Ag^{+}] = \underset{\begin{matrix} \nearrow \\ Fraction  of  Ag^{+} \\ remaining \end{matrix} }{(\frac{24.0}{25.0})} \underbrace{(0.100  M)}_{\begin{matrix} Initial  concentration \\ of   Ag^{+} \end{matrix} } \underset{\begin{matrix} \nwarrow \\ Dilution \\ factor \end{matrix} }{(\frac{50.0}{51.0})} = 0.094 1 M

⇒ E = 0.558 + 0.059 16 \log[0.094  1] = 0.497 V

12.5 mL:    [Ag^{+}] = (\frac{12.5}{25.0})(0.100  M)(\frac{50.0}{62.5}) = 0.040 0 M

⇒ E = 0.475 V

24.0 mL:  [Ag^{+}] = (\frac{1.0}{25.0})(0.100  M)(\frac{50.0}{74.0}) = 0.002 70 M

⇒ E = 0.406 V

24.9 mL:  [Ag^{+}] = (\frac{0.10}{25.0})(0.100  M)(\frac{50.0}{74.9}) = 2.67 × 10^{−4} M

⇒ E = 0.347 V

Beyond 25 mL, all AgBr has precipitated and there is excess Br^{−} in solution.

25.1 mL:   [Br^{−}] = (\frac{0.1}{75.1})(0.200  M) = 2._{67} × 10^{−4} M

[Ag^{+}] = K_{sp}/[Br^{−}] = (5.0 × 10^{−13})/(2._{67} × 10^{−4}) = 1._{88} × 10^{−9} M

⇒ E = +0.042 V

26.0 mL:   [Br^{−}] = (\frac{1.0}{76.0})(0.200  M) = 2.6_{6} × 10^{−4} M

[Ag^{+}] = 1.9_{0} × 10^{−10} M ⇒ E = −0.017 V

At 35.0 mL:    [Br^{−}] = (\frac{10.0}{85.0})(0.200  M) = 0.023 5 M

[Ag^{+}] = 2.1_{2} × 10^{−11} M ⇒ E = −0.073 V

14A

Related Answered Questions

Question: 14.1

Verified Answer:

The titration reaction is Ag^{+} + Cl^{−} →...