Question 12.4: The approximate mass properties of the Explorer 1 satellite ...

The approximate mass properties of the Explorer 1 satellite are

Mass: m=14 \mathrm{~kg}

Minor-axis moment of inertia: I_{3}=0.17 \mathrm{~kg}-\mathrm{m}^{2}

Major-axis moment of inertia: I_{1}=I_{2}=5 \mathrm{~kg}-\mathrm{m}^{2} Initially Explorer 1 was spinning at 750  \mathrm{rpm}\left(\omega_{0}=78.54  \mathrm{rad} / \mathrm{s}\right) about its minor axis.

Determine the initial and final rotational kinetic energies and the final spin rate \omega_{f}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We use Eq. (12.89) to determine the initial kinetic energy:

T_{\text {rot }, 0}=\frac{1}{2} I_{3} \omega_{0}^{2}=524.3252 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2} \quad(\text { or units of joules, J) }

T_{\mathrm{rot}}={\frac{1}{2}}I\omega^{2} (12.89)

Alternatively, we can compute rotational kinetic energy from the constant angular momentum:

H=I_{3} \omega_{0}=13.3518 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}=\text { constant }

Using Eq. (12.90)

T_{\text {rot }, 0}=\frac{H^{2}}{2 I_{3}}=524.3252 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2} \text { (same result) }

T_{\mathrm{rot}}={\frac{H^{2}}{2I}} (12.90)

The final rotational kinetic energy can be determined using Eq. (12.90) and the maximum moment of inertia I_{1} :

T_{\text {rot }, f}=\frac{H^{2}}{2 I_{1}}=17.8271 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2}

Rotational kinetic energy has decreased by nearly a factor of 30.

The final spin rate about the major axis can be computed from the constant angular momentum H or final kinetic energy T_{\text {rot, } f \text {. Using angular momentum, the final spin }} rate is

\omega_{f}=\frac{H}{I_{1}}=2.6704  \mathrm{rad} / \mathrm{s}(\text { or } 25.5  \mathrm{rpm})

Thus, the angular velocity of the “flat spin” shown in Figure 12.18 \mathrm{~b} is nearly 1 / 30 the initial spin rate along the minor axis. This 1 / 30 factor is the ratio of the minimum and maximum moments of inertia, or I_{3} / I_{1}.

12.18

Related Answered Questions