Question 21.2: The cantilever beam shown in Fig. 21.6 is uniformly tapered ...

The cantilever beam shown in Fig. 21.6 is uniformly tapered along its length in both x and y directions and carries a load of 100 kN at its free end. Calculate the forces in the booms and the shear flow distribution in the walls at a section 2 m from the built-in end if the booms resist all the direct stresses while the walls are effective only in shear. Each corner boom has a cross-sectional area of 900 mm² while both central booms have cross-sectional areas of 1200 mm².

Screenshot 2022-10-08 120222
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

the internal force system at a section 2 m from the built-in end of the beam is
S_y=100 \mathrm{kN} \quad S_x=0 \quad M_x=-100 \times 2=-200 \mathrm{kN} \mathrm{m} \quad M_y=0

The beam has a doubly symmetrical cross-section so that I_{xy} = 0 and Eq. (16.18) reduces to

\sigma_z=\left(\frac{M_y I_{x x}-M_x I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right) x+\left(\frac{M_x I_{y y}-M_y I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right) y  (16.18)

\sigma_z=\frac{M_x y}{I_{x x}}  (i)
in which, for the beam section shown in Fig. 21.6(b)

I_{x x}=4 \times 900 \times 300^2+2 \times 1200 \times 300^2=5.4 \times 10^8 \mathrm{~mm}^4

Then
\sigma_{z, r}=\frac{-200 \times 10^6}{5.4 \times 10^8} y_r
or
\sigma_{z, r}=-0.37 y_r (ii)
Hence
P_{z, r}=-0.37 y_r B_r  (iii)

The value of P_{z, r} is calculated from Eq. (iii) in column ② in Table 21.1; P_{x, r} and P_{y, r} follow from Eqs (21.10) and (21.9), respectively in columns ⑤ and ⑥. The axial load P_r, column ⑦, is given by [②² + ⑤² + ⑥²]^{ 1/2} and has the same sign as P_{z, r} (see Eq. (21.12)). The moments of P_{x, r} and P_{y, r} are calculated for a moment centre at the centre of symmetry with anticlockwise moments taken as positive. Note that in Table 21.1, P_{x, r} and P_{y, r} are positive when they act in the positive directions of the section x and y axes, respectively; the distances η_r and ξ_r of the lines of action of P_{x, r} and

Table 21.1

P_{z,r} δx_r/δz δy_r/δz P_{x,r} P_{y,r} P_r ξ_r η_r P_{x,r}η_r P_{y,r}ξ_r
Boom (KN) (KN) (KN) (KN) (m) (m) (KN m) (KN m)
1 -100 0.1 -0.05 -10 5 -101.3 0.6 0.3 3 -3
2 -133 0 -0.05 0 6.7 -177.3 0 0.3 0 0
3 -100 -0.1 -0.05 10 5 -101.3 0.6 0.3 -3 3
4 100 -0.1 0.05 -10 5 101.3 0.6 0.3 -3 3
5 133 0 0.05 0 6.7 177.3 0 0.3 0 0
6 100 0.1 0.05 10 5 101.3 0.6 0.3 3 -3

P_{y, r} from the moment centre are not given signs since it is simpler to determine the sign of each moment, P_{x, r}η_r and P_{y, r} ξ_r, by referring to the directions of P_{x, r} and P_{y, r} individually.

P_{y, r}=P_{z, r} \frac{\delta y_r}{\delta z}  (21.9)

P_{x, r}=P_{z, r} \frac{\delta x_r}{\delta z}  (21.10)

P_r=P_{z, r} \frac{\left(\delta x_r^2+\delta y_r^2+\delta z^2\right)^{1 / 2}}{\delta z}  (21.12)

From column ⑥

\sum_{r=1}^6 P_{y, r}=33.4 \mathrm{kN}

From column ⑩

\sum_{r=1}^6 P_{x, r} \eta_r=0

From column ⑪

\sum_{r=1}^6 P_{y, r} \xi_r=0

From Eq. (21.15)

S_{x, w}=S_x-\sum_{r=1}^m P_{z, r} \frac{\delta x_r}{\delta z} \quad S_{y, w}=S_y-\sum_{r=1}^m P_{z, r} \frac{\delta y_r}{\delta z}  (21.15)
S_{x, w}=0 \quad S_{y, w}=100-33.4=66.6 \mathrm{kN}
The shear flow distribution in the walls of the beam is now found using the method described in Section 20.3. Since, for this beam, I_{x y}=0 \text { and } S_x=S_{x, w}=0 \text {, }, Eq. (20.11) reduces to

\begin{aligned}q_s=&-\left(\frac{S_x I_{x x}-S_y I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right)\left(\int_0^s t_{\mathrm{D}} x \mathrm{~d} s+\sum_{r=1}^n B_r x_r\right) \\&-\left(\frac{S_y I_{y y}-S_x I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right)\left(\int_0^s t_{\mathrm{D}} y \mathrm{~d} s+\sum_{r=1}^n B_r y_r\right)+q_{s, 0}\end{aligned}  (20.11)

q_s=\frac{-S_{y, w}}{I_{x x}} \sum_{r=1}^n B_r y_r+q_{s, 0}  (iv)

We now ‘cut’ one of the walls, say 16. The resulting ‘open section’ shear flow is given by

q_{\mathrm{b}}=-\frac{66.6 \times 10^3}{5.4 \times 10^8} \sum_{r=1}^n B_r y_r

or

q_{\mathrm{b}}=-1.23 \times 10^{-4} \sum_{r=1}^n B_r y_r  (v)

Thus

\begin{aligned}&q_{\mathrm{b}, 16}=0 \\&q_{\mathrm{b}, 12}=0-1.23 \times 10^{-4} \times 900 \times 300=-33.2 \mathrm{~N} / \mathrm{mm} \\&q_{\mathrm{b}, 23}=-33.2-1.23 \times 10^{-4} \times 1200 \times 300=-77.5 \mathrm{~N} / \mathrm{mm} \\&q_{\mathrm{b}, 34}=-77.5-1.23 \times 10^{-4} \times 900 \times 300=-110.7 \mathrm{~N} / \mathrm{mm} \\&q_{\mathrm{b}, 45}=-77.5 \mathrm{~N} / \mathrm{mm}(\text { from symmetry) } \\&q_{\mathrm{b}, 56}=-33.2 \mathrm{~N} / \mathrm{mm}(\text { from symmetry) }\end{aligned}

giving the distribution shown in Fig. 21.7. Taking moments about the centre of symmetry we have, from Eq. (21.16)

S_x \eta_0-S_y \xi_0=\oint q_{\mathrm{b}} p \mathrm{~d} s+2 A q_{s, 0}-\sum_{r=1}^m P_{x, r} \eta_r+\sum_{r=1}^m P_{y, r} \xi_r  (21.16)

\begin{aligned}-100 \times 10^3 \times 600=& 2 \times 33.2 \times 600 \times 300+2 \times 77.5 \times 600 \times 300 \\&+110.7 \times 600 \times 600+2 \times 1200 \times 600 q_{s, 0}\end{aligned}

from which q_{s, 0}=-97.0 N/mm (i.e. clockwise). The complete shear flow distribution is found by adding the value of q_{s,0} to the q_b shear flow distribution of Fig. 21.7 and is shown in Fig. 21.8.

Screenshot 2022-10-08 122531

Related Answered Questions

Question: 21.3

Verified Answer:

In this example the stringer areas do not vary alo...