Question 19.3: The chromel-alumel thermocouple circuit shown below has its ...
The chromel-alumel thermocouple circuit shown below has its cold junction at 0°\text{C} and its hot junction at 100.°\text{C}. Assuming that the absolute Seebeck coefficients α_\text{ch} = 23.0 × 10^{−6} \text{V/K} and α_\text{al} = −18.0 × 10^{−6} \text{V/K} are constant over this temperature range, determine
a. The open circuit thermoelectric (Seebeck) voltage for the chromel- lumel portion of the circuit.
b. The absolute and relative Peltier coefficients for each chromel-alumel junction.
c. The influence of the copper lead wires on the potentiometer voltage reading for the lead wire junction temperatures shown in Figure 19.8.

Learn more on how we answer questions.
a. The relative Seebeck coefficient for the chromel-alumel circuit is
α_\text{ch-al} = α_\text{ch} − α_\text{al} = [23.0 −(−18.0)] × 10^{−6} \text{V/K} = 41.0 × 10^{−6} \text{V/K}
and for a constant α_\text{ch-al}, Eq. (19.15) can be integrated to give
σ_\text{AB} = −\lim_{ΔT→0} (\frac{ϕ_\text{A} −ϕ_\text{B}}{ΔT}) \mid_{I=0} = −\frac{dϕ_\text{AB}}{dT} \mid_{I=0} (19.15)
−ϕ_\text{ch-al} = α_\text{ch-al} (T_H −T_C) = (41.0 × 10^{−6} \text{V/K} (100.−0 \text{K}) = 4.1 × 10^{−3} \text{V} = ϕ_\text{al-ch}
(note that ϕ_\text{al-ch} = −ϕ_\text{ch-al}).
b. The absolute Peltier coefficients at each junction are given by Eq. (19.33) as π_\text{ch} = α_\text{ch} T and π_\text{al} = α_\text{al} T, and we can compute π_\text{ch-al} = π_\text{ch} − π_\text{al}. At the 0.00°\text{C} = 273.15 \text{K} junction,
π_\text{ch} = (23.0 × 10^{−6} \text{V/K}) (273.15 \text{K}) = 6.28 × 10^{−3} \text{V}
π_\text{al} = (−18.0 × 10^{−6} \text{V/K}) (273.15 \text{K}) = −4.91 × 10^{−3} \text{V}
and
π_\text{ch-al} = [6.28 – (−4.91)] × 10^{−3} \text{V} = 11.2 × 10^{−2} \text{V}
At the 100.° \text{C} = 373.15 \text{K} junction
π_\text{ch} = (23.0 × 10^{−6} \text{V/K}) (373.15 \text{K}) = 8.58 × 10^{−3} \text{V}
π_\text{al} = (−18.0 × 10^{−6} \text{V/K}) (373.15 \text{K}) = −6.71 × 10^{−3} \text{V}
and
π_\text{ch-al} = [8.58 – (−6.71)] × 10^{−3} \text{V} = 15.3 × 10^{−3} \text{V}
c. To determine the influence of the copper lead wires, we use Eq. (19.15) for the complete cu-al-ch-al-cu circuit connected to the potentiometer. Using the junction notation shown in Figure 19.8, the potentiometer reading is ϕ_{af} = ϕ_a − ϕ_f. We can move around the circuit to evaluate this reading as
ϕ_a − ϕ_f = (ϕ_a − ϕ_b) + (ϕ_b − ϕ_c) + (ϕ_c − ϕ_d)+ (ϕ_d − ϕ_e) + (ϕ_e− ϕ_f)
where
ϕ_a − ϕ_b = − \int_{T_b}^{T_a} α_\text{cu} dT = \int_{T_a}^{T_b} α_\text{cu} dT
ϕ_b − ϕ_c = − \int_{T_b}^{T_c} α_\text{al} dT
ϕ_c − ϕ_d = − \int_{T_c}^{T_d} α_\text{ch} dT
ϕ_d − ϕ_e = − \int_{T_e}^{T_e} α_\text{al} dT
and
ϕ_e − ϕ_f = − \int_{T_e}^{T_f} α_\text{cu} dT
Now, the contribution of the copper lead wires is
Δϕ_\text{cu} = ϕ_a − ϕ_b + ϕ_e − ϕ_f =\int_{T_a}^{T_b} α_\text{cu} dT + \int_{T_e}^{T_f} α_\text{cu} dT
and if, as the circuit diagram shows, T_a = T_f and T_b = T_e, then the influence of the copper leads is
Δϕ_\text{cu} = \int_{T_a}^{T_b} α_\text{cu} dT + \int_{T_b}^{T_a} α_\text{cu} dT = \int_{T_a}^{T_b} α_\text{cu} dT + (- \int_{T_a}^{T_b} α_\text{cu} dT ) = 0
Thus, if the copper lead wires have the same end point junction temperatures, then they do not contribute any net Seebeck voltage to the circuit. Adding up all the potential differences around the circuit and using T_a = T_f and T_b = T_e gives
Δϕ_{af} = \int_{T_a}^{T_b} α_\text{cu} dT + \int_{T_b}^{T_a} α_\text{cu} dT + \int_{T_b}^{T_c} α_\text{al} dT + \int_{T_c}^{T_d} α_\text{ch} dT + \int_{T_d}^{T_b} α_\text{al} dT
Now,
\int_{T_b}^{T_c} α_\text{al} dT + \int_{T_d}^{T_b} α_\text{al} dT = \int_{T_d}^{T_c} α_\text{E} dT = – \int_{T_c}^{T_d} α_\text{al} dT
so
ϕ_ {af} = \int_{T_c}^{T_d} (α_\text{ch} − α_\text{E}) dT = \int_{T_c}^{T_d} (α_\text{ch-al}) dT = α_\text{ch-al} (T_d −T_c)
Consequently, the potentiometer measures the chromal-alumel thermoelectric effects only so long as all the lead wires have equal junction temperatures.