Question 16.6: The conditions of air at the entry of an axial flow compress...

The conditions of air at the entry of an axial flow compressor stage are p_{1}=100 \mathrm{kN} / \mathrm{m}^{2} and T_{1}=300 \mathrm{~K} . The air angles are \beta_{1}=51^{\circ}, \beta_{2}=10^{\circ}, \alpha_{1}=\alpha_{3}=8^{\circ} .

The mean diameter and peripheral speed are 0.5 m and 150 m/s respectively. Mass flow rate through the stage is 30 kg/s; the work done factor is 0.95 and mechanical efficiency is 90%. Assuming an isentropic stage efficiency of 85%, determine (i) blade height at entry (ii) stage pressure ratio, and (iii) the power required to drive the stage (for air, R=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}, \quad \gamma=1.4 )

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(i) \rho_{1}=\frac{p_{1}}{R T_{1}}=\frac{100 \times 10^{3}}{287 \times 300}=1.16 \mathrm{~kg} / \mathrm{m}^{3}

From Eq. (16.12),

\frac{U}{V_{f}}=\tan \alpha_{1}+\tan \beta_{1}

Hence,       V_{f}=\frac{150}{\tan 8^{\circ}+\tan 51^{\circ}}

 

=109.06 \mathrm{~m} / \mathrm{s}

 

\dot{m}=V_{f} \rho_{1}\left(\pi d h_{1}\right)

 

30=109.06 \times 1.16 \times \pi \times 0.5 h_{1}

which gives h_{1}=0.15 \mathrm{~m}

(ii) From Eq. (16.19)

\Delta T_{s t}=\frac{\lambda U V_{f}}{c_{p}}\left(\tan \beta_{1}-\tan \beta_{2}\right) 

Again,        c_{p}=\frac{1.4}{(1.4-1)} \times 287=1005 \mathrm{~J} / \mathrm{kg} \mathrm{K}

Hence,       \Delta T_{s t}=\frac{0.95 \times 150 \times 190.06}{1005}\left(\tan 51^{\circ}-\tan 10^{\circ}\right) 

 

=16.37^{\circ} \mathrm{C}

With the help of

Eq. (16.20)

R_{s}=\left[1+\frac{\eta_{s} \Delta T_{s t}}{T_{1 t}}\right]^{\frac{\gamma}{\gamma-1}}

we can write

Pressure ratio, R_{s}=\left[1+\frac{0.85 \times 16.37}{300}\right]^{\frac{1.4}{0.4}}

=1.17

(iii)    P=\frac{\dot{m} w}{\eta_{m}}=\frac{\dot{m} c_{p} \Delta T_{s t}}{\eta_{m}}

 

=\frac{30 \times 1005 \times 16.37}{0.9 \times 1000} \mathrm{~kW}=548.39 \mathrm{~kW}

Related Answered Questions