Question 12.9: The cover glass on a flat-plate solar collector has a low ir...
The cover glass on a flat-plate solar collector has a low iron content, and its spectral transmissivity may be approximated by the following distribution.
What is the total transmissivity of the cover glass to solar radiation?

Learn more on how we answer questions.
Known: Spectral transmissivity of solar collector cover glass.
Find: Total transmissivity of cover glass to solar radiation.
Assumptions: Spectral distribution of solar irradiation is proportional to that of blackbody emission at 5800 K.
Analysis: From Equation 12.61 the total transmissivity of the cover is
τ = \frac{\int_{0}^{∞}G_{λ,tr}(λ) dλ}{\int_{0}^{∞}G_{λ}(λ) dλ} = \frac{\int_{0}^{∞}τ_{λ}(λ) G_{λ}(λ) dλ}{\int_{0}^{∞}G_{λ}(λ) dλ} (12.61)
τ = \frac{\int_{0}^{∞}τ_{λ}G_{λ} dλ}{\int_{0}^{∞}G_{λ} dλ}
where the irradiation G_{λ} is due to solar emission. Having assumed that the sun emits as a blackbody at 5800 K, it follows that
G_{λ}(λ) ∝ E_{λ,b}(5800 K)
With the proportionality constant canceling from the numerator and denominator of the expression for τ, we obtain
τ = \frac{\int_{0}^{∞}τ_{λ}E_{λ,b}(5800 K) dλ}{\int_{0}^{∞}E_{λ,b}(5800 K) dλ}
or, for the prescribed spectral distribution of τ_{λ}(λ),
τ = 0.90\frac{\int_{0.3}^{2.5}E_{λ,b}(5800 K) dλ}{E_{b}(5800 K)}
From Table 12.2
TABLE 12.2 Blackbody Radiation Functions | |||
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} | \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} | \pmb{F_{(0 → λ)}} | λT (μm · K) |
0.000000 | 0.375034 × 10^{-27} | 0.000000 | 200 |
0.000000 | 0.490335 × 10^{-13} | 0.000000 | 400 |
0.000014 | 0.104046 × 10^{-8} | 0.000000 | 600 |
0.001372 | 0.991126 × 10^{-7} | 0.000016 | 800 |
0.016406 | 0.118505 × 10^{-5} | 0.000321 | 1,000 |
0.072534 | 0.523927 × 10^{-5} | 0.002134 | 1,200 |
0.186082 | 0.134411 × 10^{-4} | 0.007790 | 1,400 |
0.344904 | 0.249130 | 0.019718 | 1,600 |
0.519949 | 0.375568 | 0.039341 | 1,800 |
0.683123 | 0.493432 | 0.066728 | 2,000 |
0.816329 | 0.589649 × 10^{-4} | 0.100888 | 2,200 |
0.912155 | 0.658866 | 0.140256 | 2,400 |
0.970891 | 0.701292 | 0.183120 | 2,600 |
0.997123 | 0.720239 | 0.227897 | 2,800 |
1.000000 | 0.722318 × 10^{-4} | 0.250108 | 2,898 |
0.997143 | 0.720254 × 10^{-4} | 0.273232 | 3,000 |
0.977373 | 0.705974 | 0.318102 | 3,200 |
0.943551 | 0.681544 | 0.361735 | 3,400 |
0.900429 | 0.650396 | 0.403607 | 3,600 |
0.851737 | 0.615225 × 10^{-4} | 0.443382 | 3,800 |
0.800291 | 0.578064 | 0.480877 | 4,000 |
0.748139 | 0.540394 | 0.516014 | 4,200 |
0.696720 | 0.503253 | 0.548796 | 4,400 |
0.647004 | 0.467343 | 0.579280 | 4,600 |
0.599610 | 0.433109 | 0.607559 | 4,800 |
0.554898 | 0.400813 | 0.633747 | 5,000 |
0.513043 | 0.370580 × 10^{-4} | 0.658970 | 5,200 |
0.474092 | 0.342445 | 0.680360 | 5,400 |
0.438002 | 0.316376 | 0.701046 | 5,600 |
0.404671 | 0.292301 | 0.720158 | 5,800 |
0.373965 | 0.270121 | 0.737818 | 6,000 |
0.345724 | 0.249723 × 10^{-4} | 0.754140 | 6,200 |
0.319783 | 0.230985 | 0.769234 | 6,400 |
0.295973 | 0.213786 | 0.783199 | 6,600 |
0.274128 | 0.198008 | 0.796129 | 6,800 |
0.254090 | 0.183534 | 0.808109 | 7,000 |
0.235708 | 0.170256 × 10^{-4} | 0.819217 | 7,200 |
0.218842 | 0.158073 | 0.829527 | 7,400 |
0.203360 | 0.146891 | 0.839102 | 7,600 |
0.189143 | 0.136621 | 0.848005 | 7,800 |
0.176079 | 0.127185 | 0.856288 | 8,000 |
0.147819 | 0.106772 × 10^{-4} | 0.874608 | 8,500 |
0.124801 | 0.901463 × 10^{-5} | 0.890029 | 9,000 |
0.105956 | 0.765338 | 0.903085 | 9,500 |
0.090442 | 0.653279 × 10^{-5} | 0.914199 | 10,000 |
0.077600 | 0.560522 | 0.923710 | 10,500 |
0.066913 | 0.483321 | 0.931890 | 11,000 |
0.057970 | 0.418725 | 0.939959 | 11,500 |
0.050448 | 0.364394 × 10^{-5} | 0.945098 | 12,000 |
0.038689 | 0.279457 | 0.955139 | 13,000 |
0.030131 | 0.217641 | 0.962898 | 14,000 |
0.023794 | 0.171866 × 10^{-5} | 0.969981 | 15,000 |
0.019026 | 0.137429 | 0.973814 | 16,000 |
0.012574 | 0.908240 × 10^{-6} | 0.980860 | 18,000 |
0.008629 | 0.623310 | 0.985602 | 20,000 |
0.003828 | 0.276474 | 0.992215 | 25,000 |
0.001945 | 0.140469 × 10^{-6} | 0.995340 | 30,000 |
0.000656 | 0.473891 × 10^{-7} | 0.997967 | 40,000 |
0.000279 | 0.201605 | 0.998953 | 50,000 |
0.000058 | 0.418597 × 10^{-8} | 0.999713 | 75,000 |
0.000019 | 0.135752 | 0.999905 | 100,000 |
λ_{1} = 0.3 μm, T = 5800 K:\qquad λ_{1}T = 1740 μm · K, F_{(0→λ_{1})} = 0.0335
λ_{2} = 2.5 μm, T = 5800 K:\qquad λ_{2}T = 14,500 μm · K, F_{(0→λ_{2})} = 0.9664
Hence from Equation 12.35
F_{(λ_{1}→λ_{2})} = \frac{\int_{0}^{λ_{2}}E_{λ,b} dλ – \int_{0}^{λ_{1}}E_{λ,b} dλ}{σT^{4}} = F_{(0→λ_{2})} – F_{(0→λ_{1})} (12.35)
τ = 0.90[F_{(0→λ_{2})} – F_{(0→λ_{1})}] = 0.90(0.9664 – 0.0335) = 0.84
Comments: It is important to recognize that the irradiation at the cover plate is not equal to the emissive power of a blackbody at 5800 K, G_{λ} ≠ E_{λ,b} (5800 K). It is simply assumed to be proportional to this emissive power, in which case it is assumed to have a spectral distribution of the same form. With G_{λ} appearing in both the numerator and denominator of the expression for τ, it is then possible to replace G_{λ} by E_{λ,b}.