Question 12.9: The cover glass on a flat-plate solar collector has a low ir...

The cover glass on a flat-plate solar collector has a low iron content, and its spectral transmissivity may be approximated by the following distribution.

What is the total transmissivity of the cover glass to solar radiation?

12.9
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Known: Spectral transmissivity of solar collector cover glass.

Find: Total transmissivity of cover glass to solar radiation.

Assumptions: Spectral distribution of solar irradiation is proportional to that of blackbody emission at 5800 K.

Analysis: From Equation 12.61 the total transmissivity of the cover is

τ = \frac{\int_{0}^{∞}G_{λ,tr}(λ)  dλ}{\int_{0}^{∞}G_{λ}(λ)  dλ} = \frac{\int_{0}^{∞}τ_{λ}(λ) G_{λ}(λ)  dλ}{\int_{0}^{∞}G_{λ}(λ)  dλ}              (12.61)

τ = \frac{\int_{0}^{∞}τ_{λ}G_{λ}  dλ}{\int_{0}^{∞}G_{λ}  dλ}

where the irradiation G_{λ} is due to solar emission. Having assumed that the sun emits as a blackbody at 5800 K, it follows that

G_{λ}(λ)  ∝  E_{λ,b}(5800  K)

With the proportionality constant canceling from the numerator and denominator of the expression for τ, we obtain

τ = \frac{\int_{0}^{∞}τ_{λ}E_{λ,b}(5800  K)  dλ}{\int_{0}^{∞}E_{λ,b}(5800  K)  dλ}

or, for the prescribed spectral distribution of τ_{λ}(λ),

τ = 0.90\frac{\int_{0.3}^{2.5}E_{λ,b}(5800  K)  dλ}{E_{b}(5800  K)}

From Table 12.2

TABLE 12.2 Blackbody Radiation Functions
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} \pmb{F_{(0 → λ)}} λT (μm · K)
0.000000 0.375034 × 10^{-27} 0.000000 200
0.000000 0.490335 × 10^{-13} 0.000000 400
0.000014 0.104046 × 10^{-8} 0.000000 600
0.001372 0.991126 × 10^{-7} 0.000016 800
0.016406 0.118505 × 10^{-5} 0.000321 1,000
0.072534 0.523927 × 10^{-5} 0.002134 1,200
0.186082 0.134411 × 10^{-4} 0.007790 1,400
0.344904 0.249130 0.019718 1,600
0.519949 0.375568 0.039341 1,800
0.683123 0.493432 0.066728 2,000
0.816329 0.589649 × 10^{-4} 0.100888 2,200
0.912155 0.658866 0.140256 2,400
0.970891 0.701292 0.183120 2,600
0.997123 0.720239 0.227897 2,800
1.000000 0.722318 × 10^{-4} 0.250108 2,898
0.997143 0.720254 × 10^{-4} 0.273232 3,000
0.977373 0.705974 0.318102 3,200
0.943551 0.681544 0.361735 3,400
0.900429 0.650396 0.403607 3,600
0.851737 0.615225 × 10^{-4} 0.443382 3,800
0.800291 0.578064 0.480877 4,000
0.748139 0.540394 0.516014 4,200
0.696720 0.503253 0.548796 4,400
0.647004 0.467343 0.579280 4,600
0.599610 0.433109 0.607559 4,800
0.554898 0.400813 0.633747 5,000
0.513043 0.370580 × 10^{-4} 0.658970 5,200
0.474092 0.342445 0.680360 5,400
0.438002 0.316376 0.701046 5,600
0.404671 0.292301 0.720158 5,800
0.373965 0.270121 0.737818 6,000
0.345724 0.249723 × 10^{-4} 0.754140 6,200
0.319783 0.230985 0.769234 6,400
0.295973 0.213786 0.783199 6,600
0.274128 0.198008 0.796129 6,800
0.254090 0.183534 0.808109 7,000
0.235708 0.170256 × 10^{-4} 0.819217 7,200
0.218842 0.158073 0.829527 7,400
0.203360 0.146891 0.839102 7,600
0.189143 0.136621 0.848005 7,800
0.176079 0.127185 0.856288 8,000
0.147819 0.106772 × 10^{-4} 0.874608 8,500
0.124801 0.901463 × 10^{-5} 0.890029 9,000
0.105956 0.765338 0.903085 9,500
0.090442 0.653279 × 10^{-5} 0.914199 10,000
0.077600 0.560522 0.923710 10,500
0.066913 0.483321 0.931890 11,000
0.057970 0.418725 0.939959 11,500
0.050448 0.364394 × 10^{-5} 0.945098 12,000
0.038689 0.279457 0.955139 13,000
0.030131 0.217641 0.962898 14,000
0.023794 0.171866 × 10^{-5} 0.969981 15,000
0.019026 0.137429 0.973814 16,000
0.012574 0.908240 × 10^{-6} 0.980860 18,000
0.008629 0.623310 0.985602 20,000
0.003828 0.276474 0.992215 25,000
0.001945 0.140469 × 10^{-6} 0.995340 30,000
0.000656 0.473891 × 10^{-7} 0.997967 40,000
0.000279 0.201605 0.998953 50,000
0.000058 0.418597 × 10^{-8} 0.999713 75,000
0.000019 0.135752 0.999905 100,000

λ_{1} = 0.3  μm, T = 5800 K:\qquad λ_{1}T = 1740  μm · K, F_{(0→λ_{1})} = 0.0335

λ_{2} = 2.5  μm, T = 5800 K:\qquad λ_{2}T = 14,500  μm · K, F_{(0→λ_{2})} = 0.9664

Hence from Equation 12.35

F_{(λ_{1}→λ_{2})} = \frac{\int_{0}^{λ_{2}}E_{λ,b}  dλ  –  \int_{0}^{λ_{1}}E_{λ,b}  dλ}{σT^{4}} = F_{(0→λ_{2})}  –  F_{(0→λ_{1})}              (12.35)

τ = 0.90[F_{(0→λ_{2})}  –  F_{(0→λ_{1})}] = 0.90(0.9664  –  0.0335) = 0.84

Comments: It is important to recognize that the irradiation at the cover plate is not equal to the emissive power of a blackbody at 5800 K, G_{λ} ≠ E_{λ,b} (5800  K). It is simply assumed to be proportional to this emissive power, in which case it is assumed to have a spectral distribution of the same form. With G_{λ} appearing in both the numerator and denominator of the expression for τ, it is then possible to replace G_{λ} by E_{λ,b}.

Related Answered Questions

Question: 12.2

Verified Answer:

Known: Spectral distribution of surface irradiatio...