Question 12.2: The cross section of a steel beam is constructed of a HE 450...

The cross section of a steel beam is constructed of a HE 450A wide-flange section with 25 cm × 1.5 cm a cover plate welded to the top flange and a UPN 320 channel section welded to the bottom flange (Fig. 12-8).

Locate the centroid C of the cross-sectional area.

12.8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us denote the areas of the cover plate, the wide-flange section, and the channel section as areas A_{1} , A_{2} , and A_{3} , respectively. The centroids of these three areas are labeled C_{1} , C_{2} , and C_{3} , respectively, in Fig. 12-8. Note that the composite area has an axis of symmetry, and therefore all centroids lie on that axis. The three partial areas are

A_{1}=(25 \mathrm{~cm})(1.5 \mathrm{~cm})=37.5 \mathrm{~cm}^{2} \quad A_{2}=178 \mathrm{~cm}^{2} \quad A_{3}=75.8 \mathrm{~cm}^{2}

in which the areas A_{2} and A_{3} are obtained from Tables E-1 and E-3 of Appendix E.

TABLE E-1
Properties of European Wide-Flange Beams

Designation Mass
per
meter
Area
of
section
Depth
of
section
Width
of
section
Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_{w} t_{t} I_{1} S_{1} r_{1} I_{2} S_{2} r_{2}
Kg/m {cm}^{2} mm mm mm mm {cm}^{4} {cm}^{3} cm {cm}^{4} {cm}^{3} cm
HE 1000 B
HE 900 B
HE 700 B
HE 650 b
HE 600 B
314
291
241
225
212
400
371.3
306.4
286.3
270
1000
900
700
650
600
300
300
300
300
300
19
18.5
17
16
15.5
36
35
32
31
30
644700
494100
256900
210600
171000
12890
10980
7340
6480
5701
40.15
36.48
28.96
27.12
25.17
16280
15820
14440
13980
13530
1085
1054
962.7
932.3
902
6.38
6.53
6.87
6.99
7.08
HE 550 B
HE 600 A
HE 450 B
HE 550 A
HE 360 B
HE 450 A
199
178
171
166
142
140
254.1
226.5
218
211.8
180.6
178
550
590
450
540
360
440
300
300
300
300
300
300
15
13
14
12.5
12.5
11.5
29
25
26
24
22.5
21
136700
141200
79890
111900
43190
63720
4971
4787
3551
4146
2400
2896
23.2
24.97
19.14
22.99
15.46
18.92
13080
11270
11720
10820
10140
9465
871.8
751.4
781.4
721.3
676.1
631
7.17
7.05
7.33
7.15
7.49
7.29
HE 340 B
HE 320 B
HE 360 A
HE 340 A
134
127
112
105
170.9
161.3
142.8
133.5
340
320
350
330
300
300
300
300
12
11.5
10
9.5
21.5
20.5
17.5
16.5
36660
30820
33090
27690
2156
1926
1891
1678
14.65
13.82
15.22
14.4
9690
9239
7887
7436
646
615.9
525.8
495.7
7.53
7.57
7.43
7.46
HE 320 A
HE 260 B
HE 240 B
HE 280 A
HE 220 B
HE 260 A
HE 240 A
97.6
93
83.2
76.4
71.5
68.2
60.3
124.4
118.4
106
97.26
91.04
86.82
76.84
310
260
240
270
220
250
230
300
260
240
280
220
260
240
9
10
10
8
9.5
7.5
7.5
15.5
17.5
17
13
16
12.5
12
22930
14920
11260
13670
8091
10450
7763
1479
1148
938.3
1013
735.5
836.4
675.1
13.58
11.22
10.31
11.86
9.43
10.97
10.05
6985
5135
3923
4763
2843
3668
2769
465.7
395
326.9
340.2
258.5
282.1
230.7
7.49
6.58
6.08
7
5.59
6.5
6
HE 180 B
HE 160 B
HE 140 B
HE 120 B
HE 140 A
51.2
42.6
33.7
26.7
24.7
65.25
54.25
42.96
34.01
31.42
180
160
140
120
133
180
160
140
120
140
8.5
8
7
6.5
5.5
14
13
12
11
8.5
3831
2492
1509
864.4
1033
425.7
311.5
215.6
144.1
155.4
7.66
6.78
5.93
5.04
5.73
1363
889.2
549.7
317.5
389.3
151.4
111.2
78.52
52.92
55.62
4.57
4.05
3.58
3.06
3.52
HE 100 B
HE 100 A
20.4
16.7
26.4
21.24
100
96
100
100
6
5
10
8
449.5
349.2
89.91
72.76
4.16
4.06
167.3
133.8
33.45
26.76
2.53
2.51
Note: Axes 1-1 and 2-2 are principal centroidal axes.

TABLE E-3
Properties of European Standard Channels

Designation Mass
per
meter
Area
of
section
Depth
of
section
Width
of
section
Thickness Strong axis 1-1 Weak axis 2-2
G A h b t_{w} t_{t} I_{1} S_{1} r_{1} I_{2} S_{2} r_{2} c
Kg/m {cm}^{2} mm mm mm mm {cm}^{4} {cm}^{3} cm {cm}^{4} {cm}^{3} cm cm
UPN 400 71.8 91.5 400 110 14 18 20350 1020 14.9 846 102 3.04 2.65
UPN 380
UPN 350
UPN 320
UPN 300
63.1
60.6
59.5
46.2
80.4
77.3
75.8
85.5
380
350
320
300
102
100
100
100
13.5
14
14
10
16
16
17.5
16
15760
12840
10870
8030
829
734
679
535
14
12.9
12.1
11.7
615
570
597
495
78.7
75
80.6
67.8
2.77
2.72
2.81
2.9
2.38
2.4
2.6
2.7
UPN 280
UPN 260
UPN 240
UPN 220
UPN 200
41.8
37.9
33.2
29.4
25.3
53.3
48.3
42.3
37.4
32.2
280
260
240
220
200
96
90
85
80
75
10
10
9.5
9
8.5
15
14
13
12.5
11.5
6280
4820
3600
2690
1910
448
371
300
245
191
10.9
9.99
9.22
8.48
7.7
399
317
248
197
148
57.2
47.7
39.6
33.6
27
2.74
2.56
2.42
2.3
2.14
2.53
2.36
2.23
2.14
2.01
UPN 180
UPN 160
UPN 140
UPN 120
UPN 100
22
18.8
16
13.4
10.6
28
24
20.4
17
13.5
180
160
140
120
100
70
65
60
55
50
8
7.5
7
7
6
11
10.5
10
9
8.5
1350
925
605
364
206
150
116
86.4
60.7
412
6.95
6.21
5.45
4.62
3.91
114
85.3
62.7
43.2
29.3
22.4
18.3
14.8
11.1
8.49
2.02
1.89
1.75
1.59
1.47
1.92
1.84
1.75
1.6
1.55
UPN 80 8.64 11 80 45 6 8 106 26.5 3.1 19.4 6.36 1.33 1.45
Notes: 1. Axes 1-1 and 2-2 are principal centroidal axes.
2. The distance c is measured from the centroid to the back of the web.
3. For axis 2-2, the tabulated value of S is the smaller of the two section moduli for this axis.

Let us place the origin of the x and y axes at the centroid C_{2} of the wide-flange section. Then the distances from the x axis to the centroids of the three areas are as follows:

\begin{gathered}\bar{y}_{1}=\frac{440 \mathrm{~mm}}{2}+\frac{15 \mathrm{~mm}}{2}=227.5 \mathrm{~mm} \\\bar{y}_{2}=0 \quad \bar{y}_{3}=\frac{440 \mathrm{~mm}}{2}+26 \mathrm{~mm}=246 \mathrm{~mm}\end{gathered}

in which the pertinent dimensions of the wide-flange and channel sections are obtained from Tables E-1 and E-3.
The area A and first moment Q_{x} of the entire cross section are obtained from Eqs. (12-6a) and (12-6b) as follows:

\begin{aligned}A &=\sum_{i=1}^{n} A_{i}=A_{1}+A_{2}+A_{3} \\&=37.5 \mathrm{~cm}^{2}+178 \mathrm{~cm}^{2}+75.8 \mathrm{~cm}^{2}=291.3 \mathrm{~cm}^{2} \\Q_{x} &=\sum_{i=1}^{n} \bar{y}_{i} A_{i}=\bar{y}_{1} A_{1}+\bar{y}_{2} A_{2}+\bar{y}_{3} A_{3} \\&=(22.75 \mathrm{~cm})\left(37.5 \mathrm{~cm}^{2}\right)+0-(24.6 \mathrm{~cm})\left(75.8 \mathrm{~cm}^{2}\right)=-1012 \mathrm{~cm}^{3}\end{aligned}

Now we can obtain the coordinate to the centroid C of the composite area from Eq. (12-7b):

\bar{y}=\frac{Q_{x}}{A}=\frac{\left(-1012 \mathrm{~cm}^{3}\right)}{291.3 \mathrm{~cm}^{2}}=-34.726 \mathrm{~mm}

Since \bar{y} is positive in the positive direction of the y axis, the minus sign means that the centroid C of the composite area is located below the x axis, as shown in Fig. 12-8. Thus, the distance \bar{c} between the x axis and the centroid C is

\bar{c}=34.73 \mathrm{~mm}

Note that the position of the reference axis (the x axis) is arbitrary; however, in this example we placed it through the centroid of the wide-flange section because it slightly simplifies the calculations.

Related Answered Questions