Question 3.3: The cylinder of a non-condensing steam engine is supplied wi...

The cylinder of a non-condensing steam engine is supplied with steam at 11.5 bar. The clearance volume is \frac{1}{10} th of the stroke volume and the cut-off takes place at \frac{1}{4} th of the stroke. If the pressure at the end of compression is 5.4 bar, compute the value of mean effective pressure of the steam on the piston. Assume that the expansion and compression are hyperbolic. The back pressure is 1.1 bar.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Admission pressure,                                  p_{1} = 11.5 bar
Clearance volume,                                      V_{c}  =  \frac{1}{10}th of stroke volume V_s
Cut-off                                                           = \frac{1}{4} th of the stroke
Pressure at the end of compression,        p_{5} = 5.4 bar
Back pressure,                                              p_{b}  = p_{3}   = 1.1 bar.
Mean effective pressure, p_{m} :
The theoretical mean effective pressure, when clearance and compression are considered, is given by (eqn. 9) :

p_{m(th.)}  =  p_{1}  [\frac{1}{r}  +   \left\lgroup c +  \frac{1}{r}  \right\rgroup  \log _{e} \left\lgroup \frac{c+1}{c + \frac{1}{r} } \right\rgroup ]  –  p_{b}   [ (1 –  α)  +  (c + α)  \log _{e}\left\lgroup \frac{α  + c }{c}  \right\rgroup ]                                    …(i)

r = \frac{1}{¼}   =  4          or          \frac{1}{r} = \frac{1}{4}                                     and                c  =  \frac{V_{s} / 10 }{V_{s}}  = 0.1.

To find α (ratio of volume between points of compression and admission to the swept volume   V_{s} ) applying hyperbolic law between the point of beginning and end of compression:

  p_{4}  V_{4}      =      p_{5}   V_{5}

i.e.,                                    1.1  ×   ( V_{c} + α  V_{s})   =  5.4   ×  V_{c}  

∴                                        α =  \frac{5.4  V_{c}  –    1.1  V_{c} }{1.1 V_{s}}

= \frac{5.4  V_{c}  –    1.1  V_{c}}{11  V_{c}}   = 0.39

[ ∵    V_{s}  =  V_{c}          and          p_{4}  =  p_{b}   =  1.1   bar   and
∵            α  =  \frac{V_{4}     –  V_{c}  }{V_{s}}
∴             V_{4} =  V_{c}  +  α  V_{s} 
Also      \frac{V_{c}}{V_{s}}  =  \frac{1}{10}
∴              V_{s} =   10 V_{c}   ]

Now inserting various values in eqn. (i), we get

p_{m(th.)}  =  11.5  [\frac{1}{4}   +  \left\lgroup 0.1  +  \frac{1}{4}   \right\rgroup  \log _{e}\left\lgroup \frac{0.1 + 1 }{0.1  +  ¼ }  \right\rgroup ]

– 1.1 [ (1 – 0.39 )  +  (0.1  +  0.39 )  \log _{e}\left\lgroup \frac{0.39  +  0.1  }{0.1  }  \right\rgroup ]

= 11.5 × 0.65 – 1.1 × 1.388 = 5.95 bar

i.e.,                                      Mean effective pressure of steam = 5.95 bar.

33

Related Answered Questions