Question 11.2: The data for a single stage rocket are as follows: Launch ma...
The data for a single stage rocket are as follows:
Launch mass: m_{o} = 68,000 kg
Mass ratio: n = 15
Specific impulse: I_{s p} = 390 s
Thrust: T = 933.91 kN
It is launched into a vertical trajectory, like a sounding rocket. Neglecting drag and assuming that the gravitational acceleration is constant at its sea-level value g_{o} = 9.81 m/s², calculate
(a) The time until burnout.
(b) The burnout altitude.
(c) The burnout velocity.
(d) The maximum altitude reached.
Learn more on how we answer questions.
(a) From Example 11.1(b) the burnout time t_{b o} is
t_{b o}=\frac{m_{o}-m_{f}}{\dot{m}_{e}} (a)
The burnout mass m_{f} is obtained from Equation 11.24,
m_{f}=\frac{m_{o}}{n}=\frac{68,000}{15}=4533.3 kg (b)
The propellant mass flow rate \dot{m}_{e} is given by Equation 11.20,
I_{s p}=\frac{T}{\dot{m}_{e} g_{o}} (11.20)
\dot{m}_{e}=\frac{T}{I_{s p} g_{o}}=\frac{933,913}{390 \cdot 9.81}=244.10 kg / s (c)
Substituting (b), (c) and m_{o}=68,000 kg into (a) yields the burnout time,
t_{b o}=\frac{68,000-4533.3}{244.10}=260.0 s(b) The burnout altitude is given by Example 11.1(e)
h_{b o}=\frac{c}{\dot{m}_{e}}\left\lgroup m_{f} \ln \frac{m_{f}}{m_{o}}+m_{o}-m_{f} \right\rgroup -\frac{1}{2}\left\lgroup \frac{m_{o}-m_{f}}{\dot{m}_{e}} \right\rgroup ^{2} g_{o} (d)
The exhaust velocity c is found in Equation 11.21,
c=I_{s p} g_{o}=390 \cdot 9.81=3825.9 m / s (e)
Substituting (b), (c) and (e), along with m_{o}=68,000 kg \text { and } g_{o}=9.81 m / s ^{2} into (d), we get
h_{b o}=\frac{3825.9}{244.1}\left\lgroup 4533.3 \ln \frac{4533.3}{68,000}+68,000-4533.3 \right\rgroup -\frac{1}{2}\left\lgroup \frac{68,000-4533.3}{244.1} \right\rgroup ^{2} \cdot 9.81
h_{b o}=470.74 km
(c) From Example 11.1(f) we find
v_{b o}=c \ln \frac{m_{o}}{m_{f}}-\frac{g_{o}}{\dot{m}_{e}}\left(m_{o}-m_{f}\right)=3825.9 \ln \frac{68,000}{4533.3}-\frac{9.81}{244.1}(68,000-4533.3)
v_{b o}=7.810 km / s
(d) To find h_{\max }, where the speed of the rocket falls to zero, we use Example 11.1(i),
h_{\max }=\frac{1}{2} \frac{c^{2}}{g_{o}} \ln ^{2} n-\frac{c m_{o}}{\dot{m}_{e}} \frac{n \ln n-(n-1)}{n}=\frac{1}{2} \frac{3825.9^{2}}{9.81} \ln ^{2} 15-\frac{3825.9 \cdot 68,000}{244.1} \frac{15 \ln 15-(15-1)}{15}
h_{\max }=3579.7 km
Notice that the rocket coasts to a height more than seven times the burnout altitude.