Question 15.SP.6: The double gear shown rolls on the stationary lower rack; th...

The double gear shown rolls on the stationary lower rack; the velocity of its center A is 1.2 m/s directed to the right. Determine (a) the angular velocity of the gear, (b) the velocities of the upper rack R and of point D of the gear.

STRATEGY: The double gear is undergoing general motion, so use rigid body kinematics. Resolve the rolling motion into two component motions: a translation of point A and a rotation about the center A (Fig. 1). In the translation, all points of the gear move with the same velocity  \mathbf{V}_A.  In the rotation, each point P of the gear moves about A with a relative velocity  \mathbf{v}_{P / A}=\omega \mathbf{k} \times \mathbf{r}_{P / A},  where  \mathbf{r}_{P / A}  is the position vector of P relative to A.

Screenshot 2022-11-15 142706
Screenshot 2022-11-15 142820
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

MODELING and ANALYSIS:
a. Angular Velocity of the Gear. Since the gear rolls on the lower rack, its center A moves through a distance equal to the outer circumference  2 \pi r_1  for each full revolution of the gear. Noting that  1  \mathrm{rev}=2 \pi  rad, and that when A moves to the right  \left(x_A>0\right),  the gear rotates clockwise (θ < 0), you have

\frac{x_A}{2 \pi r_1}=-\frac{\theta}{2 \pi}               \quad x_A=-r_1 \theta

Differentiating with respect to the time t and substituting the known values  v_A=1.2  m/s and  r_1=150  \mathrm{~mm}=0.150  \mathrm{~m} \text {, }  you obtain

v_A=-r_1 \omega                \quad 1.2  \mathrm{~m} / \mathrm{s}=-(0.150  \mathrm{~m}) \omega                   \quad \omega=-8  \mathrm{rad} / \mathrm{s}

\omega=\omega \mathbf{k}=-(8  \mathrm{rad} / \mathrm{s}) \mathrm{k}

where k is a unit vector pointing out of the page.

b. Velocity of Upper Rack. The velocity of the upper rack is equal to the velocity of point B; you have

\begin{aligned}\mathbf{v}_R &=\mathbf{v}_B=\mathbf{v}_A  +  \mathbf{v}_{B / A}=\mathbf{v}_A  +  \omega \mathbf{k} \times \mathbf{r}_{B / A} \\&=(1.2  \mathrm{~m} / \mathrm{s}) \mathbf{i}  –  (8  \mathrm{rad} / \mathrm{s}) \mathbf{k} \times(0.100  \mathrm{~m}) \mathbf{j} \\&=(1.2  \mathrm{~m} / \mathrm{s}) \mathbf{i}  +  (0.8  \mathrm{~m} / \mathrm{s}) \mathbf{i}=(2  \mathrm{~m} / \mathrm{s}) \mathbf{i}\end{aligned}

\mathrm{v}_R=2  \mathrm{~m} / \mathrm{s} \rightarrow

Velocity of Point D. The velocity of point D has two components (Fig. 2):

\begin{aligned}\mathbf{v}_D &=\mathbf{v}_A  +  \mathbf{v}_{D / A}=\mathbf{v}_A  +  \omega \mathbf{k} \times \mathbf{r}_{D / A} \\&=(1.2  \mathrm{~m} / \mathrm{s}) \mathbf{i}  –  (8  \mathrm{rad} / \mathrm{s}) \mathbf{k} \times(-0.150  \mathrm{~m}) \mathbf{i} \\&=(1.2  \mathrm{~m} / \mathrm{s}) \mathbf{i}  +  (1.2  \mathrm{~m} / \mathrm{s}) \mathbf{j}\end{aligned}

\mathbf{v}_D=1.697  \mathrm{~m} / \mathrm{s} \text{⦨} 45^{\circ}

REFLECT and THINK: The principles involved in this problem are similar to those that you used in Sample Prob. 15.3, but in this problem, point A was free to translate. Point C, since it is in contact with the fixed lower rack, has a velocity of zero. Every point along diameter CAB has a velocity vector directed to the right (Fig. 1) and the magnitude of the velocity increases linearly as the distance from point C increases.

Screenshot 2022-11-15 144348

Related Answered Questions