Question 3.24: The equivalent circuit parameters of a 300 kVA, 2200/200 V, ...

The equivalent circuit parameters of a 300 kVA, 2200/200 V, 50 Hz single-phase transformer are: primary winding resistance, R_{1} = 0.1  Ω; secondary winding resistance, R_{2} = 0.01  Ω; primary leakage reactance, X_{1} = 0.4  Ω; secondary leakage reactance, X_{2} = 0.03  Ω; resistance representing core loss, R_{c} = 6 × 10³  Ω, magnetizing reactance X_{m} = 2 × 10³  Ω. Calculate the voltage regulation and efficiency of the transformer at full load at 0.8 power factor lagging.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We will consider E_{1} = 2200  V and E_{2} = 220  V

Transformation ratio,           K = \frac{N_{2}}{N_{1}}= \frac{E_{2}}{E_{1}}= \frac{220}{2200}= \frac{1}{10} = 0.1

By transferring the secondary quantities to the primary side we will calculate the equivalent resistance and equivalent reactance of the transformer as

R_{e}^{′} =R_{1} + \frac{R_{2}}{K^{2}} = 0.1 + \frac{0.01}{(0.1)^{2}} = 1.1  Ω

X_{e}^{′} =X_{1} + \frac{X_{2}}{K^{2}} = 0.4 + \frac{0.04}{(0.1)^{2}} = 1.4  Ω

kVA rating = 300
VA rating = 300 × 1000

I_{1} = \frac{VA}{E_{1}}=\frac{300  ×  1000}{2200} = 136  A.

p.f = \cos Φ= 0.8; \sin Φ = 0.6

The equivalent circuit with the secondary quantities referred to the primary side and the phasor diagram have been shown in Fig. 3.65.

V_{1}^{2} = AC^{2} + CB^{2}

= (E_{1} \cos Φ + I_{1}  R^{′}_{e})^{2}  + (E_{1} \sin Φ + I_{1}  X^{′}_{e})^{2}

=(2200  ×  0.8  +  136  ×  1.1)^{2} + (2200  ×  0.6  +  136  ×  1.4)^{2}

= (1909)^{2}  +  (1510.4)^{2} 

V_{1} = 2400  V.

Voltage regulation                 =\frac{V_{1}  –  E_{1}}{V_{1}}  ×  100 = \frac{(2400  –  2200)}{2400} ×  100 

= 8.3 per cent.

To calculate efficiency, we need to calculate the copper loss and core loss.

Full- load copper loss,              W_{cu} = I_{1}^{2}  R_{e}^{′} = (136)²  ×  1.1 = 20.345  kW.

Core loss                                    = V_{1}  I_{c} = V_{1} \frac{ V_{1}}{R_{c}} = \frac{ V_{1}^{2}}{R_{c} }= \frac{(2400)²}{6  ×  10³} = 960  W

= 0.96 kW.

Efficiency,                                  \eta = \frac{Output  ×  100}{Output  +  W_{cu}  +   W_{c}}

= \frac{300  ×  0.8  ×  100}{300  ×  0.8  +  20.345  +  0.96}

= \frac{240  ×  100}{261.3} = 91.84  per cent.

3.64
3.65

Related Answered Questions