Question 11.4: The following data are given mPL = 10,000 kg πPL = 0.05 ε = ...

The following data are given

\begin{aligned}m_{P L} &=10,000 kg \\\pi_{ PL } &=0.05 \\\varepsilon &=0.15 \\I_{s p} &=350 s \\g_{o} &=0.00981 km / s ^{2}\end{aligned}         (a)

Calculate the payload velocity v_{b o} at burnout, the empty mass of the launch vehicle and the propellant mass for (a) a single stage and (b) a restricted, two-stage vehicle.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From Equation 11.43 we find

v_{b o}=I_{s p} g_{o} \ln \frac{1}{\pi_{P L}(1-\varepsilon)+\varepsilon}                (11.43)

v_{b o}=350 \cdot 0.00981 \ln \frac{1}{0.05(1+0.15)+0.15}=5.657 km / s

Equation 11.40 yields the gross mass

\pi_{P L}=\frac{m_{P L}}{m_{o}}              (11.40)

m_{o}=\frac{10,000}{0.05}=200,000 kg

from which we obtain the empty mass using Equation 11.34,

\varepsilon=\frac{m_{E}}{m_{E}+m_{p}}=\frac{m_{E}}{m_{o}-m_{P L}}                    (11.34)

m_{E}=\varepsilon\left(m_{o}-m_{P L}\right)=0.15(200,000-10,000)=28,500 kg

The mass of propellant is

m_{p}=m_{o}-m_{E}-m_{P L}=200,000-28,500-10,000=161,500 kg

(b) For a restricted two-stage vehicle, the burnout speed is given by Equation 11.50,

v_{b o_{2-\text { stage }}}=I_{s p} g_{o} \ln \left[\frac{1}{\pi_{P L}^{1 / 2}(1-\varepsilon)+\varepsilon}\right]^{2}                    (11.50)

v_{b o_{2-\text { stage }}}=350 \cdot 0.00981 \ln \left[\frac{1}{0.05^{1 / 2}(1-0.15)+0.15}\right]^{2}=7.407 km / s

The empty mass of each stage is found using Equations 11.51,

m_{E 1}=\frac{\left(1-\pi_{P L}^{1 / 2}\right) \varepsilon}{\pi_{P L}} m_{P L} \quad m_{E 2}=\frac{\left(1-\pi_{P L}^{1 / 2}\right) \varepsilon}{\pi_{P L}^{\frac{1}{2}}} m_{P L}                      (11.51)

m_{E 1}=\frac{\left(1-0.05^{1 / 2}\right) \cdot 0.15}{0.05} \cdot 10,000=23,292 kg
m_{E 2}=\frac{\left(1-0.05^{1 / 2}\right) \cdot 0.15}{0.05^{1 / 2}} \cdot 10,000=5208 kg

For the propellant masses, we turn to Equations 11.53

m_{p 1}=\frac{\left(1-\pi_{P L}^{1 / 2}\right)(1-\varepsilon)}{\pi_{P L}} m_{P L} \quad m_{p 2}=\frac{\left(1-\pi_{P L}^{1 / 2}\right)(1-\varepsilon)}{\pi_{P L}^{1 / 2}} m_{P L}                    (11.53)

m_{p 1}=\frac{\left(1-0.05^{1 / 2}\right) \cdot(1-0.15)}{0.05} \cdot 10,000=131,990 kg
m_{p 2}=\frac{\left(1-0.05^{1 / 2}\right) \cdot(1-0.15)}{0.05^{1 / 2}} \cdot 10,000=29,513 kg

The total empty mass, m_{E}=m_{E 1}+m_{E 2}, and the total propellant mass, m_{p}=m_{p 1}+m_{p 2} are the same as for the single stage rocket. The mass of the second stage, including the payload, is 22.4% of the total vehicle mass.

Related Answered Questions

Question: 11.5

Verified Answer:

Equation 11.56 gives the burnout velocity for thre...