Question 11.2: The following data is given mPL = 10 000 kg πPL = 0.05 ε = 0...

The following data is given
m_{PL}=10000  kg
\pi_{PL}=0.05
\varepsilon=0.15                          (a)
I_{sp}=350  s
g_{0}=0.00981  km/s^{2}
Calculate the payload velocity v_{bo} at burnout, the empty mass of the launch vehicle and the propellant mass for (a) a single stage and (b) a restricted, two stage vehicle.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

(a) From Equation 11.43 we find
v_{bo}=I_{sp}g_{0}\ln \frac{1}{\pi _{PL}(1-\varepsilon)+\varepsilon}                                   (11.43)
v_{bo} = 350 · 0.00981\ln \frac{1}{0.05(1 + 0.15) + 0.15}=\underline{5.657  km/s}
Equation 11.40 yields the gross mass
\pi _{PL}=\frac{m_{PL}}{m_{0}}                                         (11.40)
m_{0}=\frac{10000}{0.05}=200000  kg
from which we obtain the empty mass using Equation 11.34,
\varepsilon=\frac{m_{E}}{m_{E}+m_{P}}=\frac{m_{E}}{m_{0}-m_{PL}}                    (11.34)
m_{E} = \varepsilon(m_{0} − m_{PL}) = 0.15(200 000 − 10 000) =\underline{28 500  kg}
The mass of propellant is
m_{p} = m_{0} − m_{E} − m_{PL} = 200 000 − 28 500 − 10 000 =\underline{161 500  kg}
(b) For a restricted two-stage vehicle, the burnout speed is given by Equation 11.50,
v_{bo_{2-stage}}= I_{sp}g_{0} \ln\left[\frac{1}{\pi _{PL}^{\frac{1}{2}}(1-\varepsilon )+\varepsilon }\right]^{2}                                          (11.50)
v_{bo_{2-stage}}= 350 · 0.00981 \ln\left[\frac{1}{0.05^{\frac{1}{2} }(1-0.15)+0.15} \right]^{2}=\underline{7.407  km/s}
The empty mass of each stage is found using Equations 11.51,
\begin{matrix}m_{E_{1}}=\frac{\left(1-\pi _{PL}^{\frac{1}{2}}\right)^{\varepsilon}}{\pi _{PL}}m_{PL} & m_{E_{2}}=\frac{\left(1-\pi _{PL}^{\frac{1}{2}}\right)^{\varepsilon}}{\pi_{PL}^{\frac{1}{2}}}m_{PL} \end{matrix}                           (11.51)
m_{E_{1}}=\frac{(1-0.05^{\frac{1}{2}})· 0.15}{0.15}· 10 000 =\underline{23 292 kg}
m_{E_{2}}=\frac{(1-0.05^{\frac{1}{2}})· 0.15}{0.15^{\frac{1}{2}}}· 10 000 =\underline{5208  kg}
For the propellant masses, we turn to Equations 11.53
\begin{matrix}m_{P_{1}}=\frac{\left(1-\pi _{PL}^{\frac{1}{2}}\right)(1-\varepsilon)}{\pi _{PL}}m_{PL} & m_{P_{2}}=\frac{\left(1-\pi _{PL}^{\frac{1}{2}}\right)(1-\varepsilon)}{\pi_{PL}^{\frac{1}{2}}}m_{PL} \end{matrix}                    (11.53)
m_{p_{1}} =\frac{(1-0.05^{\frac{1}{2}})·(1- 0.15)}{0.15}· 10 000 =\underline{131990  kg}
m_{p_{1}} =\frac{(1-0.05^{\frac{1}{2}})·(1- 0.15)}{0.15^{\frac{1}{2}}}· 10 000 =\underline{29513  kg}
The total empty mass, m_{E} = m_{E_{1}} + m_{E_{2}}, and the total propellant mass, m_{p} = m_{p_{1}}+m_{p_{2}}, are the same as for the single stage rocket. The mass of the second stage, including the payload, is 22.4 percent of the total vehicle mass.

Related Answered Questions