Question 11.23: The following data pertain to a jet engine flying at an alti...
The following data pertain to a jet engine flying at an altitude of 9000 metres with a speed of 215 m/s.
Thrust power developed 750 kW
Inlet pressure and temperature 0.32 bar, – 42°C
Temperature of gases leaving the combustion chamber 690°C
Pressure ratio 5.2
Calorific value of fuel 42500 kJ/kg
Velocity in ducts (constant) 195 m/s
Internal efficiency of turbine 86%
Efficiency of compressor 86%
Efficiency of jet tube 90%
For air : c_{p} = 1.005, γ = 1.4, R = 0.287
For combustion gases, c_{p} = 1.087
For gases during expansion, γ = 1.33.
Calculate the following :
(i) Overall thermal efficiency of the unit ;
(ii) Rate of air consumption ;
(iii) Power developed by the turbine ;
(iv) The outlet area of jet tube ;
(v) Specific fuel consumption is kg per kg of thrust.
Learn more on how we answer questions.
Refer Fig. 42.
Given : T.P. = 750 kW ; p _{1} = 0.32 bar, T_{1} = – 42 + 273 = 231 K ; T_{3} = 690 + 273 = 963 K ; r_{pc} = 5.2 ; C = 42500 kJ/kg ; C_{a} = 215 m/s, C_{4} ^{′ } = 19.5 m/s, η_{c} = 0.86 ; η_{t} = 0.86 ; η_{jt} = 0.9.
Refer Fig. 42.
Let m_{f} = kg of fuel required per kg of air
Then, heat supplied per kg of air
= 42500 m_{f } = (1 + m_{f}) × 1.087 (T_{3} – T_{2} ^{′ }) …(i)
Now, \frac{ T_{2} }{ T_{1} } = (\frac{p_{2}}{p_{1}})^{\frac{γ – 1}{γ }} = (5.2)^{\frac{1.4 – 1}{1.4}} = (5.2)^{0.2857} = 1.60
or T_{2} = 231 × 1.60 = 369.6 K
Also, η_{c} = \frac{ T_{2} – T_{1} }{T_{2} ^{′ } – T_{1} } or T_{2} ^{′ } = T_{1} + \frac{ T_{2} – T_{1} }{η_{c} } = 231 + \frac{369.6 – 231 }{0.86} = 392.2 K
Substituting the value of T_{2} ^{′ } in eqn. (i), we get
42500 m_{f} = (1 + m_{f}) × 1.087 (963 – 392.2) = 620.46 (1 + m_{f})
or 42500 m_{f } = 620.46 + 620.46 m_{f}
or m_{f } = \frac{620.46 }{(42500 – 620.46)} = 0.0148 = fuel-air ratio
∴ Air-fuel ratio = \frac{ 1}{0.0148} = 67.56 : 1
The discharge velocity C_{j} = C_{5} ^{′ } cannot be determined from the thrust equation because the rate of air-flow is not known. It may be determined from the expression of jet efficiency.
Jet efficiency, η_{jet} = \frac{Final kinetic energy in the jet}{Isentropic heat drop in the jet pipe + Carry-over from the turbine }
or η_{jet} = \frac{C_{j}² / 2}{c_{pg} (T_{4} ^{′ } – T_{5}) + C_{4} ^{′ } ² / 2} (where C_{4} ^{′ } = 195 m/s ) …(ii)
Since the turbine’s work is to drive the compressor only, therefore,
c_{pa} (T_{2} ^{′ } – T_{1}) = c_{pg} (1 + \frac{m_{f }}{m_{a}} ) (T_{3} – T_{4} ^{′ } )or 1.005 (392.2 – 231) = 1.087(1 + 0.0148) (963 – T_{4} ^{′ } )
or T_{4} ^{′ } = 963 – \frac{1.005 (392.2 – 231)}{1.087 (1 + 0.0148)} = 816.13 K
Let r_{pt} = expansion pressure ratio in turbine i.e., r_{pt} = \frac{p_{3}}{p_{4}}
r_{pj} = expansion pressure ratio in jet tube i.e., r_{pj} = \frac{p_{4}}{p_{5}}∴ r_{pt} × r_{pj} = \frac{p_{3}}{p_{4}} × \frac{p_{4}}{p_{5}} \simeq 5.2
Now, η_{t} = \frac{T_{3} – T_{4} ^{′ } }{T_{3} – T_{4} } or T_{4} = T_{3} – \frac{T_{3} – T_{4} ^{′ } }{η_{t}}
= 963 – \frac{963 – 816.13}{0.86} = 792.2 K
Also, \frac{ T_{3} }{ T_{4} } = (\frac{p_{3}}{p_{4}})^{\frac{γ – 1}{γ }} = (\frac{p_{3}}{p_{4}})^{\frac{1.33 – 1}{1.33 }} or \frac{963}{792.2} = ( r_{pt})^{0.248}
or r_{pt} = ( \frac{963}{792.2})^{\frac{1}{0.248}} = 2.197
∴ r_{pj} = \frac{p_{4}}{p_{5}} = \frac{5.2}{2.197} = 2.366
Thus, \frac{ T_{4}′ }{ T_{5} } = (r_{pj})^{\frac{γ – 1}{γ }} = ( 2.366)^{\frac{1.33 – 1}{1.33 }} = 1.238
or T_{5} = \frac{ T_{4} ^{′ } }{ 1.238} = \frac{ 816.13 }{ 1.238} = 659.23 K
Substituting the values in eqn. (ii), we get
0.9 = \frac{C_{j}² / 2}{1.087 × 1000 (816.13 – 659.23) + 195² / 2} = \frac{C_{j}² / 2}{189562.8}
∴ C_{j} = \sqrt{0.9 × 189562.8 × 2} = 584.13 m/s
(i) Overall efficiency, η_{0} :
η_{0} = \frac{[(1 + \frac{m_{f }}{m_{a}} ) C_{j} – C_{a} ] C_{a}}{(\frac{m_{f }}{m_{a}} ) × C} = \frac{[(1 + 0.0148) × 584.13 – 215] 215}{1000 × 0.0148 × 42500}= 0.1291 or 12.91%.
(ii) Rate of air consumption, \dot{m}_{a} :
Thrust power = Thrust × Velocity of the unit
750 = [\frac{\left\{ (1 + \frac{m_{f }}{m_{a}} ) C_{j} – C_{a} \right\} \dot{m}_{a}}{1000}] C_{a}
or 750 = \frac{\left\{(1 + 0.0148) × 584.13 – 215 \right\} × \dot{m}_{a}}{1000} × 215 = 81.22 \dot{m}_{a}
or \dot{m}_{a} = \frac{750}{81.22} = 9.234 kg/s.
(iii) Power developed by the turbine, P_{t} :
P_{t} = \dot{m}_{a} (1 + \frac{m_{f }}{m_{a}} ) c_{pg} (T_{3} – T_{4} ^{′ })= 9.234(1 + 0.0148) × 1.087(963 – 816.13) = 1496 kW.
(iv) The outlet area of jet tube, A_{jt} :
Now, \frac{C_{j}² – C_{4} ^{′ }²}{2} = c_{pg} (T_{4} ^{′ } – T_{5} ^{′ })
or T_{5} ^{′ } = T_{4} ^{′ } – \frac{C_{j}² – C_{4} ^{′ }²}{2 × c_{pg}}
= 816.13 – \frac{(584.13² – 195²)}{2 × 1.087 × 1000} = 676.67 K
Assume the exit pressure of the gases be equal to atmospheric pressure i.e., 0.32 bar.
Density of exhaust gases, ρ = \frac{p_{5} ^{′ } }{R T _{5} ^{′ } } = \frac{0.32 × 10^{5}}{0.29 × 1000 × 676.67} = 0.163 m³/kg
(Assuming R = 0.29 for the gases)
Also, discharge of jet area = A_{jt} × C_{j} × ρ = \dot{m}_{a} (1 + \frac{m_{f }}{m_{a}} )
or A_{jt} × 584.13 × 0.163 = 9.234 (1 + 0.0148)
or A_{jt} = 0.0984 m².
(v) Specific fuel consumption in kg per kg of thrust :
Specific fuel consumption = \frac{0.0148 × 9.234 × 3600}{1000 × (750/215)}
= 0.141 kg/thrust-hour.
