Question 11.20: The following data pertain to a turbo-jet flying at an altit...

The following data pertain to a turbo-jet flying at an altitude of 9500 m :
Speed of the turbo-jet                                = 800 km/h
Propulsive efficiency                                  = 55%
Overall efficiency of the turbine plant    = 17%
Density of air at 9500 m altitude             = 0.17 kg/m³
Drag on the plane                                        = 6100 N
Assuming calorific value of the fuels used as 46000 kJ/kg,
Calculate :
(i) Absolute velocity of the jet.                                      ( ii) Volume of air compressed per min.
(iii) Diameter of the jet.                                                 ( iv) Power output of the unit.
(v) Air-fuel ratio.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given : Altitude = 9500 m,    C _{a}   =  \frac{800  ×   1000}{60  ×   60}   = 222.2 m/s,
η_{propulsive }    =   55%,  η_{overall }    =  17% ; density of air at 9500 m altitude = 0.17 kg/m³  ; drag on the plane = 6100 N.

(i) Absolute velocity of the jet, (C_{j}   –   C_{a}) :

η_{propulsive}   =    0.55   =  \frac{2  C_{a}}{C_{j}   +    C_{a}}  

where, C_{j}  = Velocity of gases at nozzle exit relative to the aircraft, and
C_{a} = Velocity of the turbo-jet/aircraft.

∴                             0.55 =  \frac{2    ×     222.2}{ C_{j}   +    222.2}

i.e.,                                            C_{j}   =  \frac{2    ×     222.2}{0.55} – 222.2 = 585.8 m/s

∴    Absolute velocity of jet = C_{j}   –   C_{a} = 585.8 – 222.2 = 363.6 m/s.
(ii) Volume of air compressed/min. :
Propulsive force                                 = \dot{m}_{a}    (C_{j}   –   C_{a} )
6100 = \dot{m}_{a} (585.8 – 222.2)

∴                                        \dot{m}_{a}   = 16.77 kg/s
∴      Volume of air compressed/min. =  \frac{16.77}{0.17}   × 60 = 5918.8 kg/min.

(iii) Diameter of the jet, d :

Now,                                              \frac{π}{4}    d²    ×    C_{j}    = 5918.8

i.e.,                                                    \frac{π}{4}    d²     × 585.8 = (5918.8/60)

∴                                                        d =    (\frac{5918.8  ×    4}{60    ×    π    ×     585.8})^{1/2}    = 0.463 m = 463 mm

i.e.,                   Diameter of the jet             = 463 mm.

(iv) Power output of the unit :

Thrust power                              = Drag force × velocity of turbo-jet
= 6100 × 222.2 N-m/s

\frac{6100    ×    222.2}{1000}   = 1355.4 kW

Turbine output                                          \frac{Thrust    power}{Propulsive     efficiency}   =  \frac{1355.4}{0.55}  = 2464.4 kW.

(v) Overall efficiency, η_{0} :

η_{0}   =  \frac{ Heat   equivalent   of    output}{\dot{m}_{f}  ×    C.V.}   

i.e.,                                            0.17 =  \frac{2464.4}{\dot{m}_{f}  ×    46000}

∴                                                      \dot{m}_{f}   =   \frac{2464.4}{0.17  ×    46000}   = 0.315 kg/s

∴   Air-fuel ratio                                      =  \frac{Air   used    (in   kg/s)}{Fuel   used   (in   kg/s)}   =  \frac{16.77}{0.315}    =  53.24

i.e.,                       Air-fuel ratio                                      = 53.24 : 1. 

Related Answered Questions