Question 6.38: The following data relate to a stage of reaction turbine : M...

The following data relate to a stage of reaction turbine :
Mean rotor diameter = 1.5 m ; speed ratio = 0.72 ; blade outlet angle = 20° ; rotor speed = 3000 r.p.m.
(i) Determine the diagram efficiency.
(ii) Determine the percentage increase in diagram efficiency and rotor speed if the rotor is designed to run at the best theoretical speed, the exit angle being 20°.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Mean rotor diameter, D = 1.5 m
Speed ratio,                   ρ =  \frac{C_{bl}}{C_{1}} = 0.72
Blade outlet angle         = 20°
Rotor speed,                  N = 3000 r.p.m.
(This example solved purely by calculations (Fig. 52) is not drawn to scale.)
(i) Diagram efficiency :
Blade velocity,                                C_{bl} =  \frac{πDN}{60}  =  \frac{π      ×    1.5     ×    3000}{60}  = 235.6 m/s
Speed ratio,                       ρ =  \frac{C_{bl}}{C_{1}} = 0.72

∴                                                        C_{1}  =  \frac{C_{bl}}{0.72}  =  \frac{235.6}{0.72}    = 327.2 m/s
Assuming that velocity triangles are symmetrical
α = φ = 20°
From the velocity ∆LMS

C_{r_1}²   =  C_{1}²   +  C_{bl}²  –   2 C_{1}  C_{bl}  \cos   α

 

C_{r_1}  =  \sqrt{(327.2)²   +   (235.6)²    –   2    ×      327.2      ×      235.6  \cos   20°}

= 100     \sqrt{ 10.7    +   5.55    –    14.48 }   = 133 m/s

i.e.,                                                      C_{r_1}    = 133 m/s

Work done per kg of steam                    =  C_{bl}   C_{w}   =    C_{bl}    (2  C_{1}   \ cos    α     –      C_{bl})

= 235.6 (2 × 327.2 \cos  20° – 235.6) = 89371.3 Nm.

Energy supplied per kg of steam

\frac{C_{1}²     +    C_{r_0}²     –      C_{r_1}²}{2}

= \frac{2  C_{1}²    –      C_{r_1}²}{2}                                                                                                 ( ∵  C_{1}   =  C_{r_0})

\frac{2  ×     (327.2)²   –     (133)² }{2}    =   98215.3   Nm

∴       Diagram efficiency      =  \frac{89371.3}{ 98215.3 }   = 0.91 = 91%.

(ii) Percentage increase in diagram efficiency :

For the best diagram efficiency (maximum), the required condition is

ρ =  \frac{C_{bl}}{C_{1}} = \cos    α

∴                                              C_{bl}  =  C_{1}   \cos  α = 372.2  \cos  20° = 307.46  m/s 

For this blade speed, the value of C_{r_1}  is again calculated by using eqn. (i),

C_{r_1}  =  \sqrt{(327.2)²   +   (307.46)²    –   2    ×      327.2      ×    307.46    ×    \cos   20°}

= 100  \sqrt{10.7   +    9.45    –     18.906}  = 111.5 m/s

Diagram efficiency                                = \frac{2    C_{bl}   (2  C_{1}    \cos    α    –  C_{bl}  )}{(C_{1}²   +    C_{r_0}²     –     C_{r_1}²  }

= \frac{2   ×      307.46  (2   ×      327.2      \cos    20°     –    307.46)}{(327.2)²   +     (327.2)²    –    (111.5)²  }   =  0.937 or 93.7%

Percentage increase in diagram efficiency

\frac{0.937    –     0.91}{0.91}   = 0.0296     or     2.96%.

The diagram efficiency for the speed can also becalculated by using relation

η _{blade}   =  \frac{2   \cos²    α }{ 1   +    \cos²    α }    =  \frac{2    ×    \cos²   20°}{1    +  \cos²   20°}    =  \frac{1.766}{1   +    0.883}  =   0.937    or    93.7%.

The best theoretical speed of the rotor is given by,

C_{bl} =  \frac{πDN}{60}          or               N =    \frac{ 60        C_{bl}  }{πD}  =  \frac{60    ×     307.46}{π    ×     1.5}  =  3914.7 r.p.m.

638

Related Answered Questions