Question 6.5: The following parameters are available for a 60-Hz four-pole...

The following parameters are available for a 60-Hz four-pole single-phase 110- V ½-hp induction motor:

R_{1}=1.5\Omega
X_{1}=2.4 \Omega
X_{m} =73.4\Omega
R^{′}_{2} =3\Omega
X^{′}_{2} =2.4\Omega

Calculate  Z_{f},Z_{b}, and the input impedance of the motor at a slip of 0.05.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Z_{f} =\frac{j36.7\left(30+j1.2\right) }{30+j37.9} =22.796\angle 40.654°
=17.294+j14.851\Omega

The result above is a direct application of Eq. (6.32). Similarly, using Eq. (6.33), we get

Z_{f} =\frac{j\left(X_{m} /2\right)\left[\left(R^{′}_{2}/2s\right)+j\left(X^{′}_{2}/2\right) \right] }{\left(R^{′}_{2}/2s\right)+j\left[\left(X_{m}+ X^{′}_{2}\right)/2 \right] }              (6.32)

Z_{b}=\frac{j\left(X_{m}/2 \right){\left[R^{′}_{2}/2\left(2-s\right) \right] +j\left(X^{′}_{2}/2\right) } }{\left[R^{′}_{2}/2\left(2-s\right)+j\left[\left(X_{m} +X^{′}_{2}\right)/2 \right] \right] }                          (6.33)

Z_{b}=\frac{j36.7\left[\left(1.5/1.95\right)+j1.2 \right] }{\left(1.5/1.95\right) +j37.9} =1.38 \angle 58.502°\Omega
=0.721+j1.766\Omega

We observe here that |Z_{f}| is much larger than |Z_{b}| at this slip, in contrast to the situation at starting (s = 1), for which Z_{f} = Z_{b}.

The input impedance Z_{i} is obtained as

Z_{i}= Z_{1}+Z_{f}+Z_{b}=19.515+j18.428
=26.841\angle 43.36° \Omega

Related Answered Questions