Question 6.5: The following parameters are available for a 60-Hz four-pole...
The following parameters are available for a 60-Hz four-pole single-phase 110- V ½-hp induction motor:
R_{1}=1.5\Omega
X_{1}=2.4 \Omega
X_{m} =73.4\Omega
R^{′}_{2} =3\Omega
X^{′}_{2} =2.4\Omega
Calculate Z_{f},Z_{b}, and the input impedance of the motor at a slip of 0.05.
Learn more on how we answer questions.
Z_{f} =\frac{j36.7\left(30+j1.2\right) }{30+j37.9} =22.796\angle 40.654°
=17.294+j14.851\Omega
The result above is a direct application of Eq. (6.32). Similarly, using Eq. (6.33), we get
Z_{f} =\frac{j\left(X_{m} /2\right)\left[\left(R^{′}_{2}/2s\right)+j\left(X^{′}_{2}/2\right) \right] }{\left(R^{′}_{2}/2s\right)+j\left[\left(X_{m}+ X^{′}_{2}\right)/2 \right] } (6.32)
Z_{b}=\frac{j\left(X_{m}/2 \right){\left[R^{′}_{2}/2\left(2-s\right) \right] +j\left(X^{′}_{2}/2\right) } }{\left[R^{′}_{2}/2\left(2-s\right)+j\left[\left(X_{m} +X^{′}_{2}\right)/2 \right] \right] } (6.33)
Z_{b}=\frac{j36.7\left[\left(1.5/1.95\right)+j1.2 \right] }{\left(1.5/1.95\right) +j37.9} =1.38 \angle 58.502°\Omega
=0.721+j1.766\Omega
We observe here that |Z_{f}| is much larger than |Z_{b}| at this slip, in contrast to the situation at starting (s = 1), for which Z_{f} = Z_{b}.
The input impedance Z_{i} is obtained as
Z_{i}= Z_{1}+Z_{f}+Z_{b}=19.515+j18.428
=26.841\angle 43.36° \Omega