Question 14.4: The functions f and g are given by  f : x = a sin (ωt + ε) ...

The functions f and g are given by

f : x = a sin (ωt + ε) and g : x = a cos (ωt + ε)

where ε (epsilon) is a positive constant.

For each of these functions:
i) Differentiate it with respect to time to find v (or \dot{x}) and show that v² = a²(ω² – x²).
ii) Differentiate v with respect to time to find \ddot{x} and show that \ddot{x} = – ω²x .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

i) For f:

x = a sin(ωt + ε)

⇒      v = \dot{x} = aω cos(ωt + ε)                ①

Therefore                       v² = a²ω² cos²(ωt + ε)

= ω²[ a² – a² sin²(ωt + ε)]

⇒           v² = ω²(a² – x²)

Similarly for g:

x = a cos(ωt + ε)

⇒      v = \dot{x} = – aω sin(ωt + ε)            ②

Therefore                      v² = a²ω² sin²(ωt + ε)

=  ω²[ a² – a² cos²(ωt + ε)]

⇒           v² = ω²(a² – x²).

ii) Differentiating equation ① gives

\ddot{x} = – aω² sin(ωt + ε)

⇒      \ddot{x} = –  ω²x.  \ \ → \boxed{\begin{matrix}\text{These results show that } \\ \text{the functions f and g represent SHM}\end{matrix}}

Similarly differentiating ② gives

\ddot{x} = – aω² cos(ωt + ε)

⇒      \ddot{x}= –  ω²x.  \ \ → \boxed{\begin{matrix}\text{These results show that } \\ \text{the functions f and g represent SHM}\end{matrix}}

Related Answered Questions