Question 10.4: The inertial components of the angular momentum of a torque-...
The inertial components of the angular momentum of a torque-free rigid body are
H_{G} = 320\hat{I}− 375\hat{J}+ 450\hat{K}(kg·m^{2}/s) (a)
The Euler angles are
\begin{matrix} \phi =20° & \theta =50° & \psi =75°\end{matrix} (b)
If the inertia tensor in the body-fixed principl frame is
[I_{G}]=\left[\begin{matrix} 1000&0&0\\0&2000&0\\0&0&3000 \end{matrix}\right] (kg · m^{2}) (c)
calculate the inertial components of the (absolute) angular acceleration.
Learn more on how we answer questions.
Substituting the Euler angles from (b) into Equation 9.117, we obtain the matrix of the transformation from the inertial frame to the body frame,
[Q]_{Xx}=\left[\begin{matrix} 0.03086 &0.6720& 0.7399\\−0.9646& −0.1740& 0.1983\\0.2620& −0.7198& 0.6428\end{matrix} \right] (d)
We use this to obtain the components of H_{G} in the body frame,
\left\{H_{G}\right\}_{x}= [Q]_{Xx}\left\{H_{G}\right\}_{X}=\left[\begin{matrix} 0.03086 &0.6720& 0.7399\\−0.9646& −0.1740& 0.1983\\0.2620& −0.7198& 0.6428\end{matrix} \right]\left\{\begin{matrix} 320\\−375\\450 \end{matrix} \right\}
=\left\{\begin{matrix} 90.86\\−154.2\\643.0 \end{matrix} \right\}(kg · m^{2}/s) (e)
In the body frame \left\{{HG}\right\}_{x} = [I_{G}]\left\{{ω}\right\}_{x}, where \left\{{ω}\right\}_{x}are the components of angular
velocity in the body frame. Thus
\left\{\begin{matrix} 90.86\\−154.2\\643.0 \end{matrix} \right\}=\left[\begin{matrix} 1000 & 0 & 0 \\ 0 & 2000 &0 \\ 0& 0 & 3000 \end{matrix} \right]\left\{\omega \right\}_{x}
or, solving for \left\{ω\right\}_{x},
\left\{\omega \right\}_{x}=\left[\begin{matrix} 1000 & 0 & 0 \\ 0 & 2000 &0 \\ 0& 0 & 3000 \end{matrix} \right]^{-1}\left\{\begin{matrix} 90.86\\−154.2\\643.0 \end{matrix} \right\}=\left\{\begin{matrix}0.09086\\−0.07709\\0.2144 \end{matrix} \right\}(rad/s) (f)
Euler’s equations of motion (Equation 9.72a) may be written for the case at hand as
M_{net}=\dot{H})_{rel}+\omega \times H (9.72a)
[I_{G}]\left\{\alpha \right\}_{x}+\left\{\omega \right\}_{x}\times ([I_{G}]\left\{\omega \right\}_{x} )=\left\{0\right\} (g)
where \left\{\alpha \right\}_{x} is the absolute acceleration in body frame components. Substituting (c) and (f) into this expression, we get
\left[\begin{matrix}1000&0&0\\0&2000&0\\0&0&3000 \end{matrix} \right]\left\{\alpha \right\}_{x}+\left\{\begin{matrix} 0.09086\\−0.07709\\0.2144 \end{matrix} \right\}
\left[\begin{matrix}1000&0&0\\0&2000&0\\0&0&3000 \end{matrix} \right]\left\{\alpha \right\}_{x}+ \left\{\begin{matrix}-16.52\\−38.95\\−7.005 \end{matrix} \right\}=\left\{\begin{matrix}0\\0\\0 \end{matrix} \right\}
so that, finally
\left\{\alpha \right\}_{x}=-\left[\begin{matrix}1000&0&0\\0&2000&0\\0&0&3000 \end{matrix} \right]^{-1} \left\{\begin{matrix}-16.52\\−38.95\\−7.005 \end{matrix} \right\}=\left\{\begin{matrix}0.01652\\0.01948\\0.002335 \end{matrix} \right\}(rad/s^{2}) (h)
These are the components of the angular acceleration in the body frame. To transform them into the inertial frame we use
\left\{\alpha \right\}_{X}=[Q]_{xX}\left\{\alpha \right\}_{x}=([Q]_{Xx})^{T}\left\{\alpha \right\}_{x} =\left[\begin{matrix} 0.03086& −0.9646& 0.2620\\0.6720& −0.1740& −0.7198\\0.7399 &0.1983& 0.6428\end{matrix} \right]\left\{\begin{matrix} 0.01652\\0.01948\\0.002335 \end{matrix}\right\} =\left\{\begin{matrix} −0.01766\\0.006033\\0.01759 \end{matrix} \right\}(rad/s^{2})That is,
\underline{\alpha =−0.01766\hat{I} + 0.006033\hat{J}+ 0.01759\hat{K}(rad/s^{2})}