Question 9.11: The intensity of loading on simple supported beam of spam 10...

The intensity of loading on simple supported beam of spam 10 m increases uniformly from 10 kN/m at the left support to 20 kN/m at the right support. Find the position and magnitude of maximum bending moment.

(U.P.T.U., Ist Sem, 2004−05)

Screenshot 2022-08-09 182750
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The load lying over simple supported beam is a combination of U.D.L and U.V.L.

ΣY = 0,

R_{A}+R_{E} = Downward load of U.D.L + Downward load of U.V.L.

=(10 \times 10)+\left(\frac{1}{2} \times 10 \times(20-10)\right)

= 100 + 50                                                                        ….. (1)

R_{A}+R_{E}=150

\Sigma M _{ A }=0,

R_{B} \times 10=(10 \times 10) \times \frac{10}{2}+\left(\frac{1}{2} \times 10 \times 10\right) \times\left(\frac{2}{3} \times 10\right)

R_{B} = 83.33 kN
R_{A} = 66.67 kN

Shear Force Diagram:

(S . F .) x_{1} x_{1}^{1}=+R_{A}- Load of U.D.L up to x_{1}  – Load of U.V.L up to x_{1}

Note: Here sign convention has been reversed as we are considering x_{1} x_{1}^{1} from left side i.e., reverse side from earlier questions.
Load of U.D.L. up to x_{1} = 10·x_{1}
Load of U.V.L. up to x_{1} = area of small triangle

=\frac{1}{2} \times x_{1} \times h

=\frac{1}{2} \times x_{1} \times x_{1}

= x_{1} ^{2} / 2

At 10 m distance (i.e., A to B) intensity of load = 10 kN/m

intensity of load at x_{1} distance will be given by =\frac{10 \times x_{1}}{10}

h = x_{1}

Thus equation (1) becomes,

(S F) x_{1} x_{1}^{1}=66.67-10 x_{1}-\frac{x_{1}^{2}}{2}

(S F)_{A}=+66.67  kN

(S F)_{B}=66.67-10 \times 10-\frac{(10)^{2}}{2}

\quad= −83.33 kN

Let the shear force changes its sign at distance ‘a’ from end A.

(S . F .)_{c}=66.67-10 a-\frac{a^{2}}{2}

0=66.67-10 a-\frac{a^{2}}{2}

a^{2}+20 a-133.34=0

a=\frac{-20 \pm \sqrt{(20)^{2}-4 \cdot 1 \cdot(-133.4)}}{2 \times 1}

a=\frac{-20 \pm 30.55}{2} \text { i.e. } a=-25.28  m \text { or } 5.28  m

a = 5.28 m as negative value does not lie on the beam.

Bending Moment Diagram:

(\text { B.M. }) x_{1} x_{1}^{1}=+R_{A} \times x_{1}-10 \times x_{1} \times \frac{x_{1}}{2}-\left(\frac{1}{2} \times x_{1} \times x_{1}\right) \times \frac{x_{1}}{3}

\quad=66.67 x_{1}-5 x_{1}^{2}-\frac{x_{1}^{3}}{6}

(B M)_{A}=0

(B M)_{B}=66.67 \times 10-5(10)^{2}-\frac{(10)^{3}}{6}=0

(B M)_{C}=66.67 \times 5.28-5(5.28)^{2}-\frac{(5.28)^{3}}{6}

= 188.09 kNm

Related Answered Questions

Question: 9.1

Verified Answer:

First, support reactions are to be determined. Con...
Question: 9.19

Verified Answer:

hTe figure can be modified about point B where Cou...
Question: 9.18

Verified Answer:

\Sigma Y =0, R_{A} + R_{B}=150 + 50...
Question: 9.16

Verified Answer:

\Sigma Y =0, R_{B} + R_{C}= 6 + (15 \times ...
Question: 9.13

Verified Answer:

Shear Force Diagram: (S F)_{X_{1} X_{1}^{1}...