Question 3.4: The linear operator A= [λ 0 0 b λ 0 0 c λ] , where bc ≠ 0 ha...

The linear operator

A= \left[\begin{matrix} \lambda & 0 & 0 \\ b & \lambda & 0 \\ 0 & c & \lambda \end{matrix} \right],    where bc ≠ 0

has the following properties:

1. A satisfies its characteristic polynomial −(t − λ)³, i.e.

\left(A-\lambda I_{3} \right) ^{3}=O_{3\times 3}

but

A-\lambda I_{3} = \left[\begin{matrix} 0& 0 & 0 \\ b & 0 & 0 \\ 0 & c & 0 \end{matrix} \right] \neq O_{3\times 3},  \left(A-\lambda I_{3} \right) ^{2}= \left[\begin{matrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ bc & 0 & 0 \end{matrix} \right] \neq  O_{3\times 3}.

2. Hence, A has eigenvalues λ, λ, λ with associated eigenvectors t\overrightarrow{e_{1} },t\in R and t ≠ 0 and A is not diagonalizable.

3. Notice that A can be written as the sum of the following linear operators:

A=\lambda I_{3} + \left(A-\lambda I_{3} \right)

= \lambda \left[\begin{matrix} 1& 0 & 0 \\ \frac{b}{\lambda } & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] + \left[\begin{matrix} 0& 0 & 0 \\ 0 & 0 & 0 \\ 0 & c & 0 \end{matrix} \right].

Note that \ll \overrightarrow{e_{1} } \gg  is the only invariant line (subspace). See Fig. 3.35 for some geometric feeling.

1
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Remark Jordan canonical form of a matrix

Let A be as in Example 3.4.

Try to choose a nonzero vector \overrightarrow{v_{3} } so that

\overrightarrow{v_{3} }\left(A-\lambda I_{3} \right) ^{3}=\overrightarrow{0},

\overrightarrow{v_{2} }=\overrightarrow{v_{3} }\left(A-\lambda I_{3} \right) \neq  \overrightarrow{0},    and

\overrightarrow{v_{1} }=\overrightarrow{v_{2} }\left(A-\lambda I_{3} \right)=\overrightarrow{v_{3} }\left(A-\lambda I_{3} \right) ^{2}  is  an  eigenvector  of  A .

Take   \overrightarrow{v_{3} }=\overrightarrow{e_{3} }, then   \overrightarrow{v_{2} }=\left(0,c,0 \right)=c \overrightarrow{e_{2} } and \overrightarrow{v_{1} }=\left(bc,0,0 \right)=bc \overrightarrow{e_{1} }. Now B=\left\{\overrightarrow{v_{1} },\overrightarrow{v_{2} },\overrightarrow{v_{3} }\right\}   is a basis for R³. Thus

\overrightarrow{v_{1} }A=bc\overrightarrow{e_{1} }A=bc\left(\lambda,0,0 \right)= \lambda\overrightarrow{v_{1} }+0\cdot \overrightarrow{v_{2} }+0\cdot \overrightarrow{v_{3} },

\overrightarrow{v_{2} }A=c\overrightarrow{e_{2} }A= c\left(b,\lambda,0 \right)= bc\overrightarrow{e_{1} }+\lambda c \overrightarrow{e_{2} }=1\cdot\overrightarrow{v_{1}} +\lambda\cdot\overrightarrow{v_{2}} +0 \cdot \overrightarrow{v_{3} },

\overrightarrow{v_{3} }A=\overrightarrow{e_{3} }A=\left(0,c,\lambda \right)=c\overrightarrow{e_{2} }+\lambda \overrightarrow{e_{3} }=0\cdot\overrightarrow{v_{1} }+1\cdot\overrightarrow{v_{2} }+\lambda\cdot\overrightarrow{v_{3} }

  \Rightarrow \left[A\right] _{B}=PAP^{-1} =\left[\begin{matrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{matrix} \right],     where    P=\left[\begin{matrix} bc \overrightarrow{e_{1} } \\ c \overrightarrow{e_{2} } \\ \overrightarrow{e_{3} } \end{matrix} \right].    (3.7.25)

\left[A\right] _{B} is called the Jordan canonical form of A (for details, see Sec. 3.7.7). See Fig. 3.35 for λ = 2.

Related Answered Questions

Question: 3.37

Verified Answer:

Both S_{1}  and  S_{2} are two-dime...
Question: 3.26

Verified Answer:

Analysis The characteristic polynomial is ...