Holooly Plus Logo

Question 2.9: The linear operator A=[0 1 b a], where ab ≠ 0 has the follow...

The linear operator

A=\begin{bmatrix} 0 & 1 \\ b & a \end{bmatrix} , where ab ≠ 0

has the following properties:

(1) a² + 4b > 0. Let \lambda_{1}=\frac{a+\sqrt{a^{2}+4b} }{2} and \lambda_{2}=\frac{a-\sqrt{a^{2}+4b} }{2} and \overrightarrow{v_{i}} =\left(b,\lambda_{i}\right) for i = 1, 2.

  1. \overrightarrow{v_{i}} A=\lambda_{i}\overrightarrow{v_{i}} , i = 1, 2. Thus, \lambda_{1}  and  \lambda_{2} are eigenvalues of A with corresponding eigenvectors \overrightarrow{v_{1}}  and   \overrightarrow{v_{2}}.
  2. \ll \overrightarrow{v_{1}} \gg  and   \ll \overrightarrow{v_{2}} \gg are invariant lines (subspaces) of R² under A.

In the basis B = \left\{\overrightarrow{v_{1}},\overrightarrow{v_{2}}\right\}, A can be represented as

\left[A\right]_{B}=PAP^{-1}= \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} ,  where  P =\left[\begin{matrix} \overrightarrow{v_{1}} \\ \overrightarrow{v_{2}} \end{matrix} \right]=\begin{bmatrix}  b & \lambda_{1} \\ b & \lambda_{2} \end{bmatrix}.

(see Exs. <B> 4, 5 of Sec. 2.4 and Sec. 2.7.3.) See Fig. 2.53.

(2) a² + 4b = 0. Let λ = \frac{a}{2} ,\frac{a}{2}  and  \overrightarrow{v}=\left(-a,2\right).

  1. \overrightarrow{v} A= \lambda \overrightarrow{v}.λ is an eigenvalue of multiplicity 2 of A with corresponding eigenvector \overrightarrow{v}.
  2. \ll \overrightarrow{v} \gg is an invariant line (subspace) of R² under A.

In the basis B =\left\{\overrightarrow{v},\overrightarrow{e_{1}}\right\}, A can be represented as

\left[A\right]_{B}=PAP^{-1}= \begin{bmatrix} \lambda & 0 \\ \frac{1}{2} & \lambda \end{bmatrix}= \lambda \begin{bmatrix} 1 & 0 \\ \frac{1}{2\lambda} & 1 \end{bmatrix}=\lambda I_{2}+\begin{bmatrix} 0 & 0 \\ \frac{1}{2} & 0 \end{bmatrix},

 where  P =\left[\begin{matrix} \overrightarrow{v} \\ \overrightarrow{e_{1}} \end{matrix} \right]=\begin{bmatrix}  -a & 2\\ 1 & 0 \end{bmatrix}.

This is the composite map of a shearing followed by an enlargement with scale λ. See Figs. 2.52 and 2.54.

(3) a² + 4b < 0. A does not have any invariant line. Notice that

\begin{bmatrix} 0 & 1 \\ b & a \end{bmatrix}=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} b & 0 \\ 0 & 1 \end{bmatrix}+\begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix}.

Hence, the geometric mapping property of A can be described as follows in N =\left\{\overrightarrow{e_{1}},\overrightarrow{e_{2}}\right\}.

See Fig. 2.55.

The operator

\begin{bmatrix} a & 1 \\ b & 0 \end{bmatrix},   where   ab ≠ 0

is of the same type.

14
10
11
12
13
The "Step-by-Step Explanation" refers to a detailed and sequential breakdown of the solution or reasoning behind the answer. This comprehensive explanation walks through each step of the answer, offering you clarity and understanding.
Our explanations are based on the best information we have, but they may not always be right or fit every situation.
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
Already have an account?

Related Answered Questions

Question: 2.25

Verified Answer:

Although A is orthogonal, i.e. A^{*}=A^{-1}...
Question: 2.11

Verified Answer:

For \overrightarrow{x}=\left(x_{1},x_{2} \...