Question 9.3.4: The matrix A = [ 4 −1 1 −1 3 −2 1 −2 3 ] has the dominant ei...

The matrix

A=\left[\begin{array}{rrr} 4 & -1 & 1 \\ -1 & 3 & -2 \\ 1 & -2 & 3 \end{array}\right]

has the dominant eigenvalue \lambda_{1}=6 with associated unit eigenvector v ^{(1)}=(1,-1,1)^{t} .
Assume that this dominant eigenvalue is known and apply deflation to approximate the other eigenvalues and eigenvectors.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The procedure for obtaining a second eigenvalue \lambda_{2} proceeds as follows:

\begin{aligned}x &=\frac{1}{6}\left[\begin{array}{r}4 \\-1 \\1\end{array}\right]=\left(\frac{2}{3},-\frac{1}{6}, \frac{1}{6}\right)^{t}, \\v ^{(1)} x ^{t} &=\left[\begin{array}{r}1 \\-1 \\1\end{array}\right]\left[\begin{array}{lll}\frac{2}{3}, & -\frac{1}{6}, & \frac{1}{6}\end{array}\right]=\left[\begin{array}{rrr}\frac{2}{3} & -\frac{1}{6} & \frac{1}{6} \\-\frac{2}{3} & \frac{1}{6} & -\frac{1}{6} \\\frac{2}{3} & -\frac{1}{6} & \frac{1}{6}\end{array}\right]\end{aligned}

and

B=A-\lambda_{1} v ^{(1)} x ^{t}=\left[\begin{array}{rrr}4 & -1 & 1 \\-1 & 3 & -2 \\1 & -2 & 3\end{array}\right]-6\left[\begin{array}{rrr}\frac{2}{3} & -\frac{1}{6} & \frac{1}{6} \\-\frac{2}{3} & \frac{1}{6} & -\frac{1}{6} \\\frac{2}{3} & -\frac{1}{6} & \frac{1}{6}\end{array}\right]=\left[\begin{array}{rrr}0 & 0 & 0 \\3 & 2 & -1 \\-3 & -1 & 2\end{array}\right].

Deleting the first row and column gives

B^{\prime}=\left[\begin{array}{rr} 2 & -1 \\ -1 & 2 \end{array}\right] ,

which has eigenvalues \lambda_{2}=3 \text { and } \lambda_{3}=1 \text {. For } \lambda_{2}=3 \text {, the eigenvector } w ^{(2)^{\prime}} can be obtained by solving the linear system

\left(B^{\prime}-3 I\right) w ^{(2)^{\prime}}= 0 , \quad \text { resulting in } w ^{(2)^{\prime}}=(1,-1)^{t} .

Adding a zero for the first component gives w ^{(2)}=(0,1,-1)^{t} and, from Eq. (9.6), we have the eigenvector v ^{(2)} of A corresponding to x_{2}=3 :

v ^{(i)}=\left(\lambda_{i}-\lambda_{1}\right) w ^{(i)}+\lambda_{1}\left( x ^{t} w ^{(i)}\right) v ^{(1)}                                 (9.6)

 

\begin{aligned} v ^{(2)} &=\left(\lambda_{2}-\lambda_{1}\right) w ^{(2)}+\lambda_{1}\left( x ^{t} w ^{(2)}\right) v ^{(1)} \\ &=(3-6)(0,1,-1)^{t}+6\left[\left(\frac{2}{3},-\frac{1}{6}, \frac{1}{6}\right)(0,1,-1)^{t}\right](1,-1,1)^{t}=(-2,-1,1)^{t} . \end{aligned}

Related Answered Questions

Question: 9.6.2

Verified Answer:

We found in Example 1 that A has the singular valu...
Question: 9.6.1

Verified Answer:

We have A^{t}=\left[\begin{array}{lllll}1 &...