Question 11.5: The Nernst Equation Describe the cell based on the following...

The Nernst Equation
Describe the cell based on the following half-reactions:

VO_{2} ^{+}   +  2  H^{+}  +  e^{-}   →   VO^{2+}  +   H_{2}O               ξ° = 1.00 V                  (1)

Zn^{2+}  +  2 e^{-}   →   Zn                                                    ξ° =  - 0.76 V                   (2)

where

T = 25°C   [VO_{2}^{+}]  =  2.0   M                    [VO^{2+}]   =   1.0  ×  10^{-2}    M

[H^{+}]  =  0.50   M                                     [Zn^{2+}]  =  1.0  ×  10^{-1}    M

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The balanced cell reaction is obtained by reversing reaction (2) and multiplying reaction (1) by 2:

2  ×   reaction (1)

2   VO_{2} ^{+}   +  4  H^{+}  + 2  e^{-}   →  2  VO^{2+}  +   2   H_{2}O                                      ξ° (cathode)= 1.00  V

Reaction (2) reversed

Zn  →  Zn^{2+}  +  2 e^{-}                                                                        – ξ° (anode)= 0.76  V

Cell
reaction:                  2   VO_{2} ^{+} (aq)  +  4  H^{+} (aq)  + Zn (s)   →  2  VO^{2+} (aq)  +   2   H_{2}O  (l)   +  Zn^{2+}    (aq)                                       ξ° _{cell} =  1.76     V

Since the cell contains components at concentrations other than 1 M, we must use the Nernst equation, where n = 2 (since two electrons are transferred), to calculate the cell potential. At 25°C we can use the equation in the form

ξ =  ξ°  – \frac{0.0591}{n}\log (Q) 

Thus

ξ = 1.76  –  \frac{0.0591}{2}\log (\frac{[Zn^{2+}] [VO^{2+} ]²}{[VO_{2} ^{+} ]² [H^{+}] ^{4} } )  

=  1.76  –  \frac{0.0591}{2}\log (\frac{(1.0 × 10^{-1}) (1.0 × 10^{-2})²}{(2.0)² (0.50)^{4}} )  

=  1.76  –  \frac{0.0591}{2}\log (4  × 10^{-5})  = 1.76  + 0.13  =  1.89    V

The cell diagram is given in Fig. 11.9

119

Related Answered Questions