Question 6.33: The outlet angle of the blade of a Parson’s turbine is 20° a...

The outlet angle of the blade of a Parson’s turbine is 20° and the axial velocity of flow of steam is 0.5 times the mean blade velocity. If the diameter of the ring is 1.25 m and the rotational speed is 3000 r.p.m. determine :
(i) Inlet angles of blades.
(ii) Power developed if dry saturated steam at 5 bar passes through the blade whose height may be assumed as 6 cm. Neglect the effect of blade thickness.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Refer Fig. 48.
Angles,                                         α = φ = 20°
Axial velocity of flow of steam,
C_{f_1}  =    C_{f_0}  =   0.5    C_{bl}  (blade speed)
Diameter of the ring,                  D = 1.25 m
Rotational speed,                         N = 3000 r.p.m.

Blade speed,                                  C_{bl}  =  \frac{πDN}{60}   =  \frac{π    ×     1.25      ×      3000}{60}  = 196 m/s

∴                                                C_{f_1}  =    C_{f_0}  = 0.5 × 196 = 98 m/s

Velocity diagram is drawn as follows :
•  Takes LM ( C_{bl}  ) = 196 m/s, and α = φ = 20°.

•  Draw line 1–2 parallel to LM at a value of 98 m/s (according to scale). The points S and N are thus located on the line 1–2.

•  Complete the rest of the diagram as shown in Fig. 48.

(i) Inlet angles of blades :

The inlet angles (by measurement) are :
β = θ = 55°

(ii) Power developed, P :
Area of flow is given by,                         A = π × D (mean diameter) × h (height of blade)
Mean flow rate is given by,

\dot{m}_{s} =  \frac{ Area    of     flow    ×      Velocity     of    flow }{Specific    volume   of    steam } =  \frac{πDh    ×     C_{f}}{v}

From steam tables,                              v_{g}   = 0.375 m³/kg at 5 bar

∴                                              \dot{m}_{s} =  \frac{π    ×    1.25   ×    (\frac{6}{100} )    ×    98}{0.375} = 61.57 kg/s

Power developed,                                    P =  \frac{\dot{m}_{s}      ×     C_{w}  ×     C_{bl}}{1000}  =  \frac{61.57    ×     330   ×      196}{1000}     = 3982.3 kW.

633

Related Answered Questions