Question 8.S-P.2: The overhanging beam AB supports a uniformly distributed loa...

The overhanging beam AB supports a uniformly distributed load of 3.2 kips/ft and a concentrated load of 20 kips at C. Knowing that for the grade of steel to be used s_{\text {all }} = 24 ksi and t_{\text {all }} = 14.5 ksi, select the wide-flange shape that should be used.

8.2
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Reactions at A and D.     We draw the free-body diagram of the beam.

From the equilibrium equations \Sigma M_{D}=0 and \Sigma M_{A}=0 we find the values of R_{A} and R_{D} shown in the diagram.

Shear and Bending-Moment Diagrams.     Using the methods of Secs. 5.2 and 5.3, we draw the diagrams and observe that

|M|_{\max }=239.4 kip \cdot ft =2873 kip \cdot \text { in. }                      |V|_{\max }=43 \text { kips }

Section Modulus.     For |M|_{\max }=2873 kip \cdot \text { in.} and s _{\text {all }}=24 ksi, the minimum acceptable section modulus of the rolled-steel shape is

S_{\min }=\frac{|M|_{\max }}{ s_{ all }}=\frac{2873 kip \cdot in .}{24 ksi }=119.7 in ^{3}

 

Selection of Wide-Flange Shape.     From the table of Properties of Rolled-Steel Shapes in Appendix C, we compile a list of the lightest shapes of a given depth that have a section modulus larger than S_{\min }.

Shape S (in³)
W24 × 68 154
W21 × 62 127
W18 × 76 146
W16 × 77 134
W14 × 82 123
W12 × 96 131

We now select the lightest shape available, namely                      W21 × 62

Shearing Stress.     Since we are designing the beam, we will conservatively assume that the maximum shear is uniformly distributed over the web area of a W21 × 62. We write

t _{m}=\frac{V_{\max }}{A_{\text {web }}}=\frac{43 kips }{8.40 in ^{2}}=5.12 ksi <14.5 ksi                        (OK)

Principal Stress at Point b.     We check that the maximum principal stress at point b in the critical section where M is maximum does not exceed s _{\text {all }}=24 ksi. We write

s _{a}=\frac{M_{\max }}{S}=\frac{2873 kip \cdot in .}{127 in ^{3}}=22.6 ksi

 

s _{b}= s _{a} \frac{y_{b}}{c}=(22.6 ksi ) \frac{9.88 in. }{10.50 in. }=21.3 ksi

 

Conservatively, t _{b}=\frac{V}{A_{\text {web }}}=\frac{12.2 kips }{8.40 in ^{2}}=1.45 ksi

We draw Mohr’s circle and find

s _{\max }=\frac{1}{2} s _{b}+R=\frac{21.3 ksi }{2}+\sqrt{\left(\frac{21.3 ksi }{2}\right)^{2}+(1.45 ksi )^{2}}

 

s _{\max }=21.4 ksi \leq 24 ksi            (OK)

8.21
8.22

Related Answered Questions