Question 7.16: The pH of Salts Calculate the pH of a 0.100 M solution of NH...

The pH of Salts
Calculate the pH of a 0.100 M solution of NH_{4}CN .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The major species in solution are

NH_{4} ^{+},                                                CN^{-} ,                                and                                H_{2}O

The familiar reactions involving these species are

NH_{4} ^{+} (aq ) \xrightleftharpoons[]{}  NH_{3} (aq)  + H^{+} (aq)                                                                  K_{a} = 5.6  × 10 ^{-10}

CN^{-} (aq ) + H_{2}O (l)\xrightleftharpoons[]{}  HCN (aq)  + OH^{-} (aq)                            K_{b} = 1.6  × 10 ^{-5}

H_{2}O (l) + H_{2}O (l)\xrightleftharpoons[]{}  H_{3}O^{+} (aq)  + OH^{-} (aq)                            K_{w} = 1.0  × 10 ^{-14}

However, noting that NH_{4} ^{+} is an acid and CN^{-} is a base, it is also sensible to consider the reaction

NH_{4} ^{+} (aq) +  CN^{-}(aq ) \xrightleftharpoons[]{}  HCN (aq)  + NH_{3} (aq) 

To evaluate the importance of this reaction, we need the value of its equilibrium constant. Note that

K= \frac{[NH_{3}]  [HCN]}{[NH_{4} ^{+}] [CN^{-} ]} = \frac{[H^{+}] [NH_{3}]}{[NH_{4} ^{+}]}  × \frac{[HCN]}{[H^{+}] [CN^{-} ]}

= K _{a} (NH_{4} ^{+} ) × \frac{1}{K _{a} (HCN)}  

Thus the value of the equilibrium constant we need is

K= \frac{K _{a} (NH_{4} ^{+} )}{K _{a} (HCN)}  = \frac{5.6  × 10 ^{-10}}{6.2  × 10 ^{-10}} = 0.90

Notice that this equilibrium constant is much larger than those for the other possible reactions. Thus we expect this reaction to be dominant in this solution.
Following the usual procedures, we have the concentrations listed below.

Initial

Concentration (mol/L)

Equilibrium

Concentration (mol/L)

[NH_{4} ^{+}]_{0}  = 0.100 [NH_{4} ^{+}] = 0.100 – x
[CN^{-}]_{0} = 0.100 [CN^{-}]  =  0.100 – x
[NH_{3}]_{0}   =  0 [NH_{3}] = x
[HCN]_{0}  = 0 [HCN]   = x

Then                                    K= 0.90 = \frac{x²}{(0.100- x)²}

Taking the square root of both sides yields

0.95 = \frac{x}{0.100 – x}

and

x= 4.9 × 10 ^{-2}    M    =  [NH_{3}]  = [HCN] 

Notice that the reaction under consideration does not involve H^{+} or OH^{-} directly. Thus, to obtain the pH, we must consider the position of the HCN or NH_{4} ^{+}   dissociation equilibrium. For example, for HCN

  K_{a} = 6.2  × 10 ^{-10}  = \frac{[H^{+}] [CN^{-}]}{[HCN]}

From the preceding calculations,

[CN^{-}] = 0.100  –  x =  0.100  –  0.049  = 0.051   M 

[HCN] = x  =  4.9 × 10 ^{-2}  M

Substituting these values into the K_{a} expression for HCN gives

[H^{+} ] = 6.0  × 10 ^{-10}   M

and

pH =9.22

Note that this solution is basic, just as we predicted in Example 7.15.

Related Answered Questions

Question: 7.11

Verified Answer:

The major species in solution are H^{+}[/l...
Question: 7.12

Verified Answer:

The major species in solution are Na^{+}[/...
Question: 7.13

Verified Answer:

The major species in solution are N H_{4} ...
Question: 7.6

Verified Answer:

Since methylamine (CH _{3}NH _{2} ...
Question: 7.7

Verified Answer:

The fraction of each species present is the concen...
Question: 7.5

Verified Answer:

The major species in this solution are Na^...