Question 23.1: The phase sequence of the Y-connected generator in Fig. 23.1...

The phase sequence of the Y-connected generator in Fig. 23.13 is ABC.
a. Find the phase angles \theta_{2} \text { and } \theta_{3} .
b. Find the magnitude of the line voltages.
c. Find the line currents.
d. Verify that, since the load is balanced, I _{N}=0.

23.13
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a. For an ABC phase sequence,

\theta_{2}=-120^{\circ} \quad \text { and } \quad \theta_{3}=+120^{\circ}.

\text { b. } E_{L}=\sqrt{3} E_{\phi}=(1.73)(120 V )=208 V \text {. Therefore, }

E_{A B}=E_{B C}=E_{C A}=208 V.

\text { c. } V _{\phi}= E _{\phi} . \text { Therefore, }

V _{a n}= E _{A N} \quad \quad  \quad  V _{b n}= E _{B N} \quad \quad  \quad V _{c n}= E _{C N}.

I _{\phi L}= I _{a n}=\frac{ V _{a n}}{ Z _{a n}}=\frac{120 V \angle 0^{\circ}}{3 \Omega+j 4 \Omega}=\frac{120 V \angle 0^{\circ}}{5 \Omega \angle 53.13^{\circ}}.

=24 A \angle-53.13^{\circ}.

I _{b n}=\frac{ V _{b n}}{ Z _{b n}}=\frac{120 V \angle-120^{\circ}}{5 \Omega \angle 53.13^{\circ}}=24 A \angle-173.13^{\circ}.

I _{c n}=\frac{ V _{c n}}{ Z _{c n}}=\frac{120 V \angle+120^{\circ}}{5 \Omega \angle 53.13^{\circ}}=24 A \angle 66.87^{\circ}.

\text { and, since } I _{L}= I _{\phi L},

I _{A a}= I _{a n}=24 A \angle-53.13^{\circ}.

I _{B b}= I _{b n}=24 A \angle-173.13^{\circ}.

I _{C c}= I _{c n}=24 A \angle 66.87^{\circ}.

d. Applying Kirchhoff’s current law, we have

I _{N}= I _{A a}+ I _{B b}+ I _{C c}.

In rectangular form,

I _{A a}=24 A \angle-53.13^{\circ} \ = \ 14.40 A -j 19.20 A.

I _{B b}=24 A \angle-173.13^{\circ}=-22.83 A -j 2.87 A.

I _{C c}=24 A \angle 66.87^{\circ} \quad = \quad \underline{ 9.43 A +j 22.07 A } .

\sum\left( I _{A a}+ I _{B b}+ I _{C c}\right) \quad=\quad 0+j 0.

\text { and } I _{N} \text { is in fact equals to zero, as required for a balanced load. }

Related Answered Questions